The Gru¨neisen parameter has long been used in equations of state for solids to relate thermodynamic properties to lattice vibrational spectra [1]. A few papers have extended the concept to studies of liquid structure. Knopoff and Shapiro [2] have evaluated a Gru¨neisen parameter for water and for mercury, attempting to relate its temperature dependence in a limited range to atomic clustering within the liquid. Sharma [3], in a series of papers, has evaluated a pseudo-Gru¨neisen parameter in mercury and liquefied gases and related it to internal pressures, a solubility parameter, and clustering phenomena. In this paper we evaluate the Gru¨neisen parameter for a variety of fluids, and show how it occurs in many problems in compressible fluid hydrodynamics, without reference to concepts of liquid structure. The work extends that reported in an earlier paper for the special case of steady state, single phase flow [4].

This content is only available via PDF.
You do not currently have access to this content.