Abstract

Due to growing concerns about the environmental impact of refrigerants, carbon dioxide (CO2) heat pumps have been increasingly evaluated as efficient alternatives for conventional heat pumps. Performance analyses of CO2 heat pump water heaters (HPWHs) have been the subject of many studies, but these are typically limited to parametric analyses of air-source HPWHs. The interrelated behavior of the supercritical and subcritical thermodynamic properties, component operation, and efficiency means that a parametric study cannot adequately capture the inherent nonlinearity. Therefore, this paper, for the first time, aims to perform a multi-objective optimization on CO2 water-sourced HPWH performance in order to minimize the total component costs, maximize gas cooler (GC) heating capacity, and maximize the coefficient of performance (COP) using two different optimization scenarios. The decision variables are defined as GC pressure (75–140 bar), evaporator temperature (−19.5–0.2 °C), and GC outlet temperature for CO2 (16–36 °C). The model performance is constrained by the practical ranges of the GC and evaporator inlet and outlet temperatures for water. A coupled simulation-optimization model through python is developed using Engineering Equation Solver (EES) software and the non-dominated sorting genetic algorithm II (NSGA-II). The result of the optimal Pareto front showed that the optimal GC heating capacity changes from 19.2 to 56.7 kW, with a lowest cost of $7771 to a highest cost of $9742, respectively. When the lower bound of the GC outlet temperature was set to 32 °C, the Pareto front showed a maximum COP of 3.23, with a corresponding GC heating capacity of 44.36 kW.

References

1.
Heating—Fuels & Technologies—IEA
.” https://www.iea.org/fuels-and-technologies/heating, Accessed January 2, 2023.
2.
Noaman
,
M.
,
Awad
,
O.
,
Morosuk
,
T.
,
Tsatsaronis
,
G.
, and
Salomo
,
S.
,
2022
, “
Identifying the Market Scenarios for Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
050906
.
3.
Gentile
,
R.
,
Vesely
,
L.
,
Ghouse
,
J. H.
,
Goyal
,
V.
, and
Kapat
,
J. S.
,
2023
, “
Transient Analysis of a Supercritical Carbon Dioxide Air Cooler Using IDAES
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022104
.
4.
Zhou
,
Y.
,
Bao
,
J.
, and
Yang
,
M.
,
2022
, “
Design and Performance Analysis of a Solar-Coal-Fired Complementary Power System Based on the S-CO2 Brayton Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082108
.
5.
Mohanraj
,
M.
,
Belyayev
,
Y.
,
Jayaraj
,
S.
, and
Kaltayev
,
A.
,
2018
, “
Research and Developments on Solar Assisted Compression Heat Pump Systems–A Comprehensive Review (Part A: Modeling and Modifications)
,”
Renew. Sust. Energy Rev.
,
83
, pp.
90
123
.
6.
You
,
D.
,
Tatli
,
A. E.
,
Ghanavati
,
A.
, and
Metghalchi
,
H.
,
2022
, “
Design and Analysis of a Solar Energy Driven Tri-Generation Plant for Power, Heating, and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082105
.
7.
Wang
,
J.
,
Belusko
,
M.
,
Evans
,
M.
,
Liu
,
M.
,
Zhao
,
C.
, and
Bruno
,
F.
,
2022
, “
A Comprehensive Review and Analysis on CO2 Heat Pump Water Heaters
,”
Energy Convers. Manage.
, p.
100277
.
8.
Robinson
,
D. M.
, and
Groll
,
E. A.
,
1998
, “
Efficiencies of Transcritical CO2 Cycles With and Without an Expansion Turbine: Rendement de Cycles Transcritiques au CO2 Avec et Sans Turbine D’expansion
,”
Int. J. Refrige.
,
21
(
7
), pp.
577
589
.
9.
Baheta
,
A. T.
,
Hassan
,
S.
,
Reduan
,
A. R. B.
, and
Woldeyohannes
,
A. D.
,
2015
, “
Performance Investigation of Transcritical Carbon Dioxide Refrigeration Cycle
,”
Proc. CIRP
,
26
, pp.
482
485
.
10.
Qi
,
P. C.
,
He
,
Y. L.
,
Wang
,
X. L.
, and
Meng
,
X. Z.
,
Jul. 2013
, “
Experimental Investigation of the Optimal Heat Rejection Pressure for a Transcritical CO2 Heat Pump Water Heater
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
120
125
.
11.
Nekså
,
P.
,
Rekstad
,
H.
,
Zakeri
,
G. R.
, and
Schiefloe
,
P. A.
,
1998
, “
CO2-Heat Pump Water Heater: Characteristics, System Design and Experimental Results
,”
Int. J. Refrige.
,
21
(
3
), pp.
172
179
.
12.
White
,
S. D.
,
Yarrall
,
M. G.
,
Cleland
,
D. J.
, and
Hedley
,
R. A.
,
2002
, “
Modelling the Performance of a Transcritical CO2 Heat Pump for High Temperature Heating
,”
Int. J. Refrige.
,
25
(
4
), pp.
479
486
.
13.
Velasco
,
F. J. S.
,
Haddouche
,
M. R.
,
Illán-Gómez
,
F.
, and
García-Cascales
,
J. R.
,
2022
, “
Experimental Characterization of the Coupling and Heating Performance of a CO2 Water-to-Water Heat Pump and a Water Storage Tank for Domestic hot Water Production System
,”
Energy Build.
,
265
, p.
112085.
.
14.
Yang
,
J. L.
,
Ma
,
Y. T.
,
Li
,
M. X.
, and
Hua
,
J.
,
2010
, “
Modeling and Simulating the Transcritical CO2 Heat Pump System
,”
Energy
,
35
(
12
), pp.
4812
4818
.
15.
Illán-Gómez
,
F.
,
Sena-Cuevas
,
V. F.
,
García-Cascales
,
J. R.
, and
Velasco
,
F. J. S.
,
2021
, “
Experimental and Numerical Study of a CO2 Water-to-Water Heat Pump for Hot Water Generation
,”
Int. J. Refrige.
,
132
, pp.
30
44
.
16.
Ye
,
Z.
,
Wang
,
Y.
,
Zendehboudi
,
A.
,
Hafner
,
A.
, and
Cao
,
F.
,
2022
, “
Investigation on the Performance of Fluted Tube-in-Tube Gas Cooler in Transcritical CO2 Heat Pump Water Heater
,”
Int. J. Refrige.
,
135
, pp.
208
220
.
17.
Liu
,
S.
,
Li
,
Z.
,
Dai
,
B.
,
Zhong
,
Z.
,
Li
,
H.
,
Song
,
M.
, and
Sun
,
Z.
,
2019
, “
Energetic, Economic and Environmental Analysis of Air Source Transcritical CO2 Heat Pump System for Residential Heating in China
,”
Appl. Therm. Eng.
,
148
, pp.
1425
1439
.
18.
Dai
,
B.
,
Qi
,
H.
,
Liu
,
S.
,
Ma
,
M.
,
Zhong
,
Z.
,
Li
,
H.
,
Song
,
M.
, and
Sun
,
Z.
,
2019
, “
Evaluation of Transcritical CO2 Heat Pump System Integrated With Mechanical Subcooling by Utilizing Energy, Exergy and Economic Methodologies for Residential Heating
,”
Energy Convers. Manage.
,
192
, pp.
202
220
.
19.
Dai
,
B.
,
Qi
,
H.
,
Dou
,
W.
,
Liu
,
S.
,
Zhong
,
D.
,
Yang
,
H.
,
Nian
,
V.
, and
Hao
,
Y.
,
2020
, “
Life Cycle Energy, Emissions and Cost Evaluation of CO2 Air Source Heat Pump System to Replace Traditional Heating Methods for Residential Heating in China: System Configurations
,”
Energy Convers. Manage.
,
218
, p.
112954
.
20.
Wang
,
Y.
,
Zong
,
S.
,
Song
,
Y.
,
Cao
,
F.
,
He
,
Y.
, and
Gao
,
Q.
,
2021
, “
Experimental and Techno-Economic Analysis of Transcritical CO2 Heat Pump Water Heater With Fin-and-Tube and Microchannel Heat Exchanger
,”
Appl. Therm. Eng.
,
199
, p.
117606
.
21.
Chan
,
W.
,
Morosuk
,
T.
,
Li
,
X.
, and
Li
,
H.
,
2023
, “
Exergoeconomic Analysis and Tri-Objective Optimization of the Allam Cycle Co-Fired by Biomass and Natural Gas
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
122101
.
22.
Genovese
,
M.
,
Lucarelli
,
G.
, and
Fragiacomo
,
P.
,
2023
, “
Feasibility Analysis of a Fuel Cell-Based Tri-Generation Energy System via the Adoption of a Multi-Objective Optimization Tool
,”
ASME J. Energy Resour. Technol.
,
145
(
9
), p.
091401
.
23.
Farsi
,
A.
, and
Rosen
,
M. A.
,
2022
, “
Multi-Objective Optimization of a Geothermal Steam Turbine Combined With Reverse Osmosis and Multi-Effect Desalination for Sustainable Freshwater Production
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052102
.
24.
Jiang
,
H.
,
Zhang
,
Z.
,
Zhang
,
Z.
, and
Gong
,
W.
,
2023
, “
Multi-Objective Optimization of Parallel-Connected Double-Effect Mechanical Vapor Recompression System Based on Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011701
.
25.
Okasha
,
A.
,
Müller
,
N.
, and
Deb
,
K.
,
2022
, “
Bi-Objective Optimization of Transcritical CO2 Heat Pump Systems
,”
Energy
,
247
, p.
123469
.
26.
Klein
,
S. A.
, and
Nellis
,
G.
,
2011
,
Engineering Equation Solver (EES) for Microsoft Windows Operating Systems, Professional Versions
,
F-Chart Software
,
Madison, WI
.
27.
Sarkar
,
J.
,
Bhattacharyya
,
S.
, and
Ramgopal
,
M.
,
2009
, “
A Transcritical CO2 Heat Pump for Simultaneous Water Cooling and Heating: Test Results and Model Validation
,”
Int. J. Energy Res.
,
33
(
1
), pp.
100
109
.
28.
Rousseau
,
P. G.
,
Van Eldik
,
M.
, and
Greyvenstein
,
G. P.
,
2003
, “
Detailed Simulation of Fluted Tube Water Heating Condensers
,”
Int. J. Refrige.
,
26
(
2
), pp.
232
239
.
29.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
30.
Shah
,
M. M.
,
1982
, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.;(United States)
,
88(CONF-820112-)
.
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evolut. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.