Abstract

Studying the effect of co-combustion of multiple fuels on soot formation has become a hot spot in the investigation of soot particles. In this paper, the influence of methane blending on soot formation in ethylene flame combustion is studied experimentally and numerically. The visible spectrum of flame image processing technology was used for the in situ measurement of laminar flame temperature and carbon smoke volume points in the experiment. The effects of different methane blending ratios on particle nucleation, coalescence, surface growth, and oxidation process of soot were analyzed based on the piecewise particle dynamics soot model of polycyclic aromatic hydrocarbons (PAHs) using CoFlame Code. Results indicate that the synergistic effect promoted the increasing rate of nucleation and addition reaction of hydrogen extraction at a low methane blending ratio, and the increase in the total mass of soot was mainly due to the PAH condensation rate. The total amount of soot generation gradually decreases with increasing blending ratio. The overall trend of condensation, surface growth rate, and soot nucleation in the flame decreases with increasing blending ratio. And the nucleation rate gradually shifts from a single peak to a double peak and increases slightly at the initial stage of the flame combustion reaction. It is worth mentioning that the change of three PAH precursors (secondary benzo(a)pyrenyl, benzo(a)pyrene, and benzo(ghi)fluoranthene) and the temperature explains the change of nucleation rate from unimodal to bimodal.

References

1.
Medhat
,
M.
,
Attia
,
A.
,
Moneib
,
H. A.
, and
Emara
,
A. A.
,
2020
, “
Effect of Soot-Inhibitor Additives on the Thermal Structure and Soot Volume Fraction Inside Laminar Diffusion Natural Gas Flames
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062303
.
2.
Ibrahim
,
M.
,
Attia
,
A.
,
Emara
,
A.
, and
Monieb
,
H.
,
2020
, “
An Investigation of Soot Volume Fraction and Temperature for Natural Gas Laminar Diffusion Flame Established From a Honeycomb Gaseous Burner
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012202
.
3.
Wei
,
S.
,
Chen
,
J.
,
Xu
,
R.
, and
Zhao
,
X.
,
2021
, “
Soot Formation With Light Extinction and Grayscale Extraction Methods Applied to Ethanol-Gasoline Blends Laminar Flame
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032302
.
4.
Askari
,
O.
,
Metghalchi
,
M.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion Characteristics of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
5.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
6.
Lu
,
J.
,
Xiong
,
Q.
, and
Zhou
,
H. C.
,
2009
, “
Experimental Investigations on the Feasibility of TPD Method for Soot Volume Fraction Measurement in High-Speed Air Flow Nonpremix Flame
,”
J. Eng. Thermophys.
,
30
(
7
), pp.
1229
1232
.
7.
Dai
,
J. M.
, and
Jin
,
Z.
,
2003
, “
Study on the Measurement Techniques of Flame Temperature
,”
Acta Metrol. Sin.
, pp.
217
225
.
8.
Mclintock
,
I. S.
,
1968
, “
The Effect of Various Diluents on Soot Production in Laminar Ethylene Diffusion Flames
,”
Combust. Flame
,
12
(
3
), pp.
217
225
.
9.
Glassman
,
I.
,
1989
, “
Soot Formation in Combustion Processes
,”
Symposium (International) on Combustion
,
22
(
1
), pp.
295
311
.
10.
Haynes
,
B. S.
, and
Wagner
,
H. G.
,
1981
, “
Soot Formation
,”
Prog. Energy Combust. Sci.
,
7
(
4
), pp.
229
273
.
11.
Vandsburger
,
U.
,
Kennedy
,
I.
, and
Glassman
,
I.
,
1984
, “
Sooting Counterflow Diffusion Flames With Varying Oxygen Index
,”
Combust. Sci. Technol.
,
39
(
1–6
), pp.
263
285
.
12.
Gomez
,
A.
, and
Glassman
,
I.
,
1988
, “
Quantitative Comparison of Fuel Soot Formation Rates in Laminar Diffusion Flames
,”
Symposium (International) on Combustion
,
21
(
1
), pp.
1087
1095
.
13.
Gülder
,
Ö. L.
,
Snelling
,
D. R.
, and
Sawchuk
,
R. A.
,
1996
, “
Influence of Hydrogen Addition to Fuel on Temperature Field and Soot Formation in Diffusion Flames
,”
Symposium (International) on Combustion
,
26
(
2
), pp.
2351
2358
.
14.
Singh
,
P.
, and
Sung
,
C. J.
,
2016
, “
PAH Formation in Counterflow Non-premixed Flames of Butane and Butanol Isomers
,”
Combust. Flame
,
170
, pp.
91
110
.
15.
Yoon
,
S. S.
,
Anh
,
D. H.
, and
Chung
,
S. H.
,
2008
, “
Synergistic Effect of Mixing Dimethyl Ether With Methane, Ethane, Propane, and Ethylene Fuels on Polycyclic Aromatic Hydrocarbon and Soot Formation
,”
Combust. Flame
,
154
(
3
), pp.
368
377
.
16.
Yoon
,
S. S.
,
Lee
,
S. M.
, and
Chung
,
S. H.
,
2005
, “
Effect of Mixing Methane, Ethane, Propane, and Propene on the Synergistic Effect of PAH and Soot Formation in Ethylene-Base Counterflow Diffusion Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1417
1424
.
17.
Trottier
,
S.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Johnson
,
M. R.
,
2007
, “
Measurement and Modeling of the Sooting Propensity of Binary Fuel Mixtures
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
611
619
.
18.
Lee
,
S. M.
,
Yoon
,
S. S.
, and
Chung
,
S. H.
,
2004
, “
Synergistic Effect on Soot Formation in Counterflow Diffusion Flames of Ethylene–Propane Mixtures With Benzene Addition
,”
Combust. Flame
,
136
(
4
), pp.
493
500
.
19.
Shao
,
C.
,
Guan
,
B.
,
Lin
,
B.
,
Gu
,
H.
,
Gu
,
C.
,
Li
,
Z.
, and
Huang
,
Z.
,
2016
, “
Effect of Methane Doping on Nascent Soot Formation in Ethylene-Based Laminar Premixed Flames
,”
Fuel
,
186
, pp.
422
429
.
20.
Lin
,
B.
,
Gu
,
H.
,
Ni
,
H.
,
Guan
,
B.
,
Li
,
Z.
,
Han
,
D.
,
Gu
,
C.
,
Shao
,
C.
,
Huang
,
Z.
, and
Lin
,
H.
,
2018
, “
Effect of Mixing Methane, Ethane, Propane and Ethylene on the Soot Particle Size Distribution in a Premixed Propene Flame
,”
Combust. Flame
,
193
, pp.
54
60
.
21.
Li
,
Q.
,
Wang
,
L.
,
Yang
,
R.
,
Yan
,
Z.
,
Song
,
C.
, and
Huang
,
Z.
,
2022
, “
Synergistic Effect of Mixing Ethylene With Propane on the Morphology and Nanostructure of Soot in Laminar Coflow Diffusion Flames
,”
J. Energy Eng.
,
148
(
1
), p.
04021062
.
22.
Chu
,
H.
,
Han
,
W.
,
Cao
,
W.
,
Gu
,
M.
, and
Xu
,
G.
,
2019
, “
Effect of Methane Addition to Ethylene on the Morphology and Size Distribution of Soot in a Laminar Co-Flow Diffusion Flame
,”
Energy
,
166
(
C
), pp.
392
400
.
23.
Snelling
,
D. R.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
,
Gulder
,
O. L.
,
Weckman
,
E. J.
, and
Fraser
,
R. A.
,
2002
, “
Spectrally Resolved Measurement of Flame Radiation to Determine Soot Temperature and Concentration
,”
AIAA J.
,
40
(
9
), pp.
1789
1795
.
24.
Huang
,
Q.-x.
,
Wang
,
F.
,
Liu
,
D.
,
Ma
,
Z.-Y.
,
Yan
,
J.-h.
,
Chi
,
Y.
, and
Cen
,
K.-F.
,
2009
, “
Reconstruction of Soot Temperature and Volume Fraction Profiles of an Asymmetric Flame Using Stereoscopic Tomography
,”
Combust. Flame
,
156
(
3
), pp.
565
573
.
25.
Yan
,
W.
, and
Lou
,
C.
,
2013
, “
Two-Dimensional Distributions of Temperature and Soot Volume Fraction Inversed From Visible Flame Images
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
229
233
.
26.
Liu
,
D.
,
Huang
,
Q. X.
,
Wang
,
F.
,
Chi
,
Y.
,
Cen
,
K. F.
, and
Yan
,
J. H.
,
2010
, “
Simultaneous Measurement of Three-Dimensional Soot Temperature and Volume Fraction Fields in Axisymmetric or Asymmetric Small Unconfined Flames With CCD Cameras
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
6
), p.
061202
.
27.
Zhang
,
Y.
,
Liu
,
F.
,
Clavel
,
D.
,
Smallwood
,
G. J.
, and
Lou
,
C.
,
2019
, “
Measurement of Soot Volume Fraction and Primary Particle Diameter in Oxygen Enriched Ethylene Diffusion Flames Using the Laser-Induced Incandescence Technique
,”
Energy
,
177
, pp.
421
432
.
28.
Zhang
,
L.
,
Ren
,
X.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2020
, “
A Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082307
.
29.
Si
,
M.
,
Cheng
,
Q.
,
Song
,
J.
,
Liu
,
Y.
,
Tao
,
M.
, and
Lou
,
C.
,
2017
, “
Study on Inversion of Morphological Parameters of Soot Aggregates in Hydrocarbon Flames
,”
Combust. Flame
,
183
, pp.
261
270
.
30.
Si
,
M.
,
Cheng
,
Q.
,
Zhang
,
Q.
,
Wang
,
D.
, and
Luo
,
Z.
,
2020
, “
Simultaneous Reconstruction of the Temperature and Inhomogeneous Radiative Properties of Soot in Atmospheric and Pressurized Ethylene/Air Flames
,”
Combust. Sci. Technol.
,
192
(
10
), pp.
1
17
.
31.
Zhang
,
Y.-D.
,
Lou
,
C.
,
Xie
,
M.-L.
,
Fang
,
Q.-Y.
, and
Zhou
,
H.-C.
,
2011
, “
Computation and Measurement for Distributions of Temperature and Soot Volume Fraction in Diffusion Flames
,”
J. Cent. South Univ. Technol.
,
18
(
4
), pp.
1263
1271
.
32.
Lou
,
C.
, and
Zhou
,
H.-C.
,
2009
, “
Simultaneous Determination of Distributions of Temperature and Soot Volume Fraction in Sooting Flames Using Decoupled Reconstruction Method
,”
Numer. Heat Transfer Part A Appl.
,
56
(
2
), pp.
153
169
.
33.
Zhang
,
Y.
,
Liu
,
F.
, and
Lou
,
C.
,
2018
, “
Experimental and Numerical Investigations of Soot Formation in Laminar Coflow Ethylene Flames Burning in O2/N2 and O2/CO2 Atmospheres at Different O2 Mole Fractions
,”
Energy Fuels
,
32
(
5
), pp.
6252
6263
.
34.
Liu
,
F.
,
Gregory
,
J.
,
Smallwood
,
G. J.
,
Omel
,
L.
, and
Gülder
,
O. L.
,
2000
, “
Application of the Statistical Narrow-Band Correlated-k Method to Low-Resolution Spectral Intensity and Radiative Heat Transfer Calculations—Effects of the Quadrature Scheme
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3119
3135
.
35.
Liu
,
H.
,
Zheng
,
S.
,
Zhou
,
H.
, and
Qi
,
C.
,
2016
, “
Measurement of Distributions of Temperature and Wavelength-Dependent Emissivity of a Laminar Diffusion Flame Using Hyper-Spectral Imaging Technique
,”
Meas. Sci. Technol.
,
27
(
2
), pp.
1
10
.
36.
Smyth
,
K. C.
, and
Shaddix
,
C. R.
,
1996
, “
The Elusive History of m = 1.57–0.56i for the Refractive Index of Soot
,”
Combust. Flame
,
107
(
3
), pp.
314
320
.
37.
Slavinskaya
,
N. A.
, and
Frank
,
P.
,
2009
, “
A Modelling Study of Aromatic Soot Precursors Formation in Laminar Methane and Ethene Flames
,”
Combust. Flame
,
156
(
9
), pp.
1705
1722
.
38.
Demarco
,
R.
,
Jerez
,
A.
,
Liu
,
F.
,
Chen
,
L.
, and
Fuentes
,
A.
,
2021
, “
Modeling Soot Formation in Laminar Coflow Ethylene Inverse Diffusion Flames
,”
Combust. Flame
,
232
, p.
111513
.
39.
Chu
,
C.
,
Amidpour
,
Y.
,
Eaves
,
N. A.
, and
Thomson
,
M. J.
,
2021
, “
An Experimental and Numerical Study of the Effects of Reactant Temperatures on Soot Formation in a Coflow Diffusion Ethylene Flame
,”
Combust. Flame
,
233
, p. 111574.
40.
Jörg
,
A.
,
Bockhorn
,
H.
, and
Frenklach
,
M.
,
2000
, “
Kinetic Modeling of Soot Formation With Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons
,”
Combust. Flame.
, pp.
218
223
.
41.
Snelling
,
D. R.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
,
Gülder
,
Ö. L
,
Weckman
,
E. J.
, and
Fraser
,
R. A.
,
2002
, “
Spectrally Resolved Measurement of Flame Radiation to Determine Soot Temperature and Concentration
,”
AIAA J.
,
40
(
9
), pp.
218
223
.
42.
Eaves
,
N. A.
,
Zhang
,
Q.
,
Liu
,
F.
,
Guo
,
H.
,
Dworkin
,
S. B.
, and
Thomson
,
M. J.
,
2016
, “
CoFlame: A Refined and Validated Numerical Algorithm for Modeling Sooting Laminar Coflow Diffusion Flames
,”
Comput. Phys. Commun.
,
207
, pp.
464
477
.
43.
Legros
,
G.
,
Wang
,
Q.
,
Bonnety
,
J.
,
Kashif
,
M.
,
Morin
,
C.
,
Consalvi
,
J.-L.
, and
Liu
,
F.
,
2015
, “
Simultaneous Soot Temperature and Volume Fraction Measurements in Axis-Symmetric Flames by a Two-Dimensional Modulated Absorption/Emission Technique
,”
Combust. Flame
,
162
(
6
), pp.
2705
2719
.
44.
Jerez
,
A.
,
Consalvi
,
J.-L.
,
Fuentes
,
A.
,
Liu
,
F.
, and
Demarco
,
R.
,
2018
, “
Soot Production Modeling in a Laminar Coflow Ethylene Diffusion Flame at Different Oxygen Indices Using a PAH-Based Sectional Model
,”
Fuel
,
231
, pp.
404
416
.
45.
Hwang
,
J. Y.
,
Lee
,
W.
,
Kang
,
H. G.
, and
Chung
,
S. H.
,
1998
, “
Synergistic Effect of Ethylene–Propane Mixture on Soot Formation in Laminar Diffusion Flames
,”
Combust. Flame
,
114
(
3
), pp.
370
380
.
46.
Khosousi
,
A.
,
Liu
,
F.
,
Dworkin
,
S. B.
,
Eaves
,
N. A.
,
Thomson
,
M. J.
,
He
,
X.
,
Dai
,
Y.
, et al
,
2015
, “
Experimental and Numerical Study of Soot Formation in Laminar Coflow Diffusion Flames of Gasoline/Ethanol Blends
,”
Combust. Flame
,
162
(
10
), pp.
3925
3933
.
47.
McEnally
,
C. S.
, and
Pfefferle
,
L. D.
,
2007
, “
The Effects of Dimethyl Ether and Ethanol on Benzene and Soot Formation in Ethylene Nonpremixed Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
603
610
.
You do not currently have access to this content.