Abstract

With the growing need for sustainable carbon-neutral liquid fuels, low-grade feedstocks, such as lignocellulosic biomass, and municipal solid wastes offer sufficient potential via thermochemical conversion. But the existing thermochemical means are limited in feed flexibility and scalability and require significant processing (energy and costs) of the intermediates. Bio-oil/biocrude intermediate from fast pyrolysis and hydrothermal techniques is impeded by issues of stability and oxygen content, along with hydrotreating viability. To address these issues, we investigated a novel pathway of near-critical CO2-assisted integrated liquefaction-extraction (NILE) technology in conceptual aspects for conversion of various biomass and municipal solid wastes into high-quality biocrude with high compatibility for co-hydrotreating with traditional fossil crude for liquid fuel needs in power and transportation sectors. Using supercritical CO2 for dewatering wet feedstocks, for liquefaction, and extraction for lighter biocrude has produced biocrude with lower oxygen content by 50%, lowered metal content by 90%, stable viscosity, low acidity, and good aging stability compared to that produced from hydrothermal liquefaction along with higher hydrotreating and co-hydrotreating compatibility. Hydrotreating of the biocrude extract from supercritical CO2 extraction also was feasible with no detected coke deposition, an oxygen content of 1%, and catalyst deactivation. The validation and capabilities of the NILE concept urge for its further development to obtain sustainable liquid fuels with lower greenhouse gas emissions and costs.

References

1.
Holladay
,
J.
,
Abdullah
,
Z.
, and
Heyne
,
J.
,
2020
, “
Sustainable Aviation Fuel: Review of Technical Pathways
,” US DOE, Article DOE/EE–2041: 2020.
2.
U.S. Energy Information Administration
,
2022
, “Monthly Energy Review,” April Monthly Report.
3.
Efroymson
,
R. A.
, and
Langholtz
,
M. H.
,
2017
, “
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2:Environmental Sustainability Effects of Select Scenarios From Volume 1
,” Oak Ridge National Lab., Oak Ridge, TN.
4.
Langholtz
,
M. H.
,
Stokes
,
B. J.
, and
Eaton
,
L. M.
,
2016
, “
2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy
,”
Ind. Biotechnol.
,
12
(
5
), pp.
282
289
.
5.
EPA
,
2019
, “
Advancing Sustainable Materials Management: Facts and Figures Report
,”
United States Environmental Protection Agency
.
6.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “Thermochemical Reforming of Wastes to Renewable Fuels,”
Energy for Propulsion: A Sustainable Technologies Approach
,
A. K.
Runchal
,
A. K.
Gupta
,
A.
Kushari
,
A.
De
, and
S. K.
Aggarwal
, eds.,
Springer Singapore
,
Singapore
, pp.
395
428
.
7.
Holmgren
,
J.
,
2019
,
Creating a Carbon Smart Future
,
SAF Summit
,
Seattle, WA
.
8.
Ladanai
,
S.
, and
Vinterbäck
,
J.
,
2009
,
Global Potential of Sustainable Biomass for Energy
,
Swedish University for Agricultural Sciences Dept.
,
Uppsala, Sweden
.
9.
Kan
,
T
,
Strezov
,
V
, and
Evans
,
TJ
,
2016
, “
Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters
,”
Renewable Sustainable Energy Rev.
,
57
(
1
), pp.
1126
1140
.
10.
Bridgwater
,
A. V.
,
2012
, “
Review of Fast Pyrolysis of Biomass and Product Upgrading
,”
Biomass Bioenergy
,
38
(
1
), pp.
68
94
.
11.
Wang
,
S.
,
Dai
,
G.
,
Yang
,
H.
, and
Luo
,
Z.
,
2017
, “
Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review
,”
Prog. Energy Combust. Sci.
,
62
(
1
), pp.
33
86
.
12.
Dutta
,
A.
,
Sahir
,
A. H.
,
Tan
,
E.
,
Humbird
,
D.
,
Snowden-Swan
,
L. J.
,
Meyer
,
P. A.
,
Ross
,
J.
,
Sexton
,
D.
,
Yap
,
R.
, and
Lukas
,
J.
,
2015
, “
Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways With In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors
.”
13.
Zhang
,
Q.
,
Chang
,
J.
,
Wang
,
T.
, and
Xu
,
Y.
,
2006
, “
Review of Biomass Pyrolysis Oil Properties and Upgrading Research
,”
Energy Convers. Manage.
,
48
(
1
), pp.
87
92
.
14.
Choi
,
Y. S.
,
Elkasabi
,
Y.
,
Tarves
,
P. C.
,
Mullen
,
C. A.
, and
Boateng
,
A. A.
,
2017
, “
Catalytic Cracking of Fast and Tail Gas Reactive Pyrolysis Bio-Oils Over HZSM-5
,”
Fuel Process. Technol.
,
161
(
1
), pp.
132
138
.
15.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
.
16.
Linck
,
M.
,
Felix
,
L.
,
Marker
,
T.
, and
Roberts
,
M.
,
2014
, “
Integrated Biomass Hydropyrolysis and Hydrotreating: A Brief Review
,”
WIREs Energy Environ.
,
3
(
6
), pp.
575
581
.
17.
Griffin
,
M. B.
,
Iisa
,
K.
,
Wang
,
H.
,
Dutta
,
A.
,
Orton
,
K. A.
,
French
,
R. J.
,
Santosa
,
D. M.
, et al
,
2018
, “
Driving Towards Cost-Competitive Biofuels Through Catalytic Fast Pyrolysis by Rethinking Catalyst Selection and Reactor Configuration
,”
Energy Environ. Sci.
,
11
(
10
), pp.
2904
2918
.
18.
Gunawardena
,
D. A.
, and
Fernando
,
S. D.
,
2018
, “
Screening of Transition Metal/Oxide-Impregnated ZSM-5 Catalysts for Deoxygenation of Biomass Oxygenates via Direct Methane Intervention
,”
Biofuels
,
9
(
1
), pp.
113
120
.
19.
Zheng
,
L.
,
Singh
,
P.
,
Cronly
,
J.
,
Ubogu
,
E. A.
,
Ahmed
,
I.
,
Ling
,
C.
,
Zhang
,
Y.
, and
Khandelwal
,
B.
,
2021
, “
Impact of Aromatic Structures and Content in Formulated Fuel for Jet Engine Applications on Particulate Matter Emissions
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122301
.
20.
Mukarakate
,
C.
,
Zhang
,
X.
,
Stanton
,
A. R.
,
Robichaud
,
D. J.
,
Ciesielski
,
P. N.
,
Malhotra
,
K.
,
Donohoe
,
B. S.
, et al
,
2014
, “
Real-Time Monitoring of the Deactivation of HZSM-5 During Upgrading of Pine Pyrolysis Vapors
,”
Green Chem.
,
16
(
3
), pp.
1444
1461
.
21.
Resende
,
F. L. P.
,
2016
, “
Recent Advances on Fast Hydropyrolysis of Biomass
,”
Catal. Today
,
269
(
1
), pp.
148
155
.
22.
Marker
,
T. L.
,
Felix
,
L. G.
,
Linck
,
M. B.
, and
Roberts
,
M. J.
,
2012
, “
Integrated Hydropyrolysis and Hydroconversion (IH2) for the Direct Production of Gasoline and Diesel Fuels or Blending Components From Biomass, Part 1: Proof of Principle Testing
,”
Environ. Prog. Sustain. Energy
,
31
(
2
), pp.
191
199
.
23.
Marker
,
T. L.
,
Felix
,
L. G.
,
Linck
,
M. B.
,
Roberts
,
M. J.
,
Ortiz-Toral
,
P.
, and
Wangerow
,
J.
,
2014
, “
Integrated Hydropyrolysis and Hydroconversion (IH 2®) for the Direct Production of Gasoline and Diesel Fuels or Blending Components From Biomass, Part 2: Continuous Testing
,”
Environ. Prog. Sustain. Energy
,
33
(
3
), pp.
762
768
.
24.
Kim
,
J.-W.
,
Mun
,
T.-Y.
,
Kim
,
J.-O.
, and
Kim
,
J.-S.
,
2011
, “
Air Gasification of Mixed Plastic Wastes Using a Two-Stage Gasifier for the Production of Producer Gas With Low Tar and a High Caloric Value
,”
Fuel
,
90
(
6
), pp.
2266
2272
.
25.
Ail
,
S. S.
, and
Dasappa
,
S.
,
2016
, “
Biomass to Liquid Transportation Fuel via Fischer Tropsch Synthesis—Technology Review and Current Scenario
,”
Renewable Sustainable Energy Rev.
,
58
(
1
), pp.
267
286
.
26.
dos Santos
,
R. G.
, and
Alencar
,
A. C.
,
2020
, “
Biomass-Derived Syngas Production via Gasification Process and Its Catalytic Conversion Into Fuels by Fischer Tropsch Synthesis: A Review
,”
Int. J. Hydrogen Energy
,
45
(
36
), pp.
18114
18132
.
27.
Burra
,
K. G.
,
Chandna
,
P.
, and
Gupta
,
A. K.
,
2021
, “Thermochemical Solutions for CO2 Utilization to Fuels and Value-Added Products,”
Sustainable Development for Energy, Power, and Propulsion
,
A.
De
,
A. K.
Gupta
,
S. K.
Aggarwal
,
A.
Kushari
, and
A. K.
Runchal
, eds.,
Springer Singapore
,
Singapore
, pp.
59
89
.
28.
Lahijani
,
P.
,
Zainal
,
Z. A.
,
Mohammadi
,
M.
, and
Mohamed
,
A. R.
,
2015
, “
Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO via the Boudouard Reaction: A Review
,”
Renewable Sustainable Energy Rev.
,
41
(
1
), pp.
615
632
.
29.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
30.
Parthasarathy
,
P.
, and
Narayanan
,
K. S.
,
2014
, “
Hydrogen Production From Steam Gasification of Biomass: Influence of Process Parameters on Hydrogen Yield—A Review
,”
Renew. Energy
,
66
(
1
), pp.
570
579
.
31.
Stoll
,
I. K.
,
Boukis
,
N.
, and
Sauer
,
J.
,
2020
, “
Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective
,”
Chem. Ing. Tech.
,
92
(
1–2
), pp.
125
136
.
32.
Dimitriadis
,
A.
, and
Bezergianni
,
S.
,
2017
, “
Hydrothermal Liquefaction of Various Biomass and Waste Feedstocks for Biocrude Production: A State of the Art Review
,”
Renewable Sustainable Energy Rev.
,
68
(
1
), pp.
113
125
.
33.
Elliott
,
D. C.
,
Biller
,
P.
,
Ross
,
A. B.
,
Schmidt
,
A. J.
, and
Jones
,
S. B.
,
2015
, “
Hydrothermal Liquefaction of Biomass: Developments From Batch to Continuous Process
,”
Bioresource Technol.
,
178
(
1
), pp.
147
156
.
34.
Kumar
,
M.
,
Olajire Oyedun
,
A.
, and
Kumar
,
A.
,
2018
, “
A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock
,”
Renewable Sustainable Energy Rev.
,
81
(
1
), pp.
1742
1770
.
35.
Aggarwal
,
S.
,
Johnson
,
S.
,
Hakovirta
,
M.
,
Sastri
,
B.
, and
Banerjee
,
S.
,
2019
, “
Removal of Water and Extractives From Softwood With Supercritical Carbon Dioxide
,”
Ind. Eng. Chem. Res.
,
58
(
8
), pp.
3170
3174
.
36.
Kallupalayam Ramasamy
,
K.
,
Thorson
,
M.
,
Billing
,
J.
,
Holladay
,
J.
,
Drennan
,
C.
,
Hoffman
,
B.
, and
Haq
,
Z.
,
2021
, “
Hydrothermal Liquefaction: Path to Sustainable Aviation Fuel
.”
37.
Zhu
,
Y.
,
Biddy
,
M. J.
,
Jones
,
S. B.
,
Elliott
,
D. C.
, and
Schmidt
,
A. J.
,
2014
, “
Techno-Economic Analysis of Liquid Fuel Production From Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading
,”
Appl. Energy
,
129
(
1
), pp.
384
394
.
38.
Sayegh
,
A.
,
Merkert
,
S.
,
Zimmermann
,
J.
,
Horn
,
H.
, and
Saravia
,
F.
,
2022
, “
Treatment of Hydrothermal-Liquefaction Wastewater With Crossflow UF for Oil and Particle Removal
,”
Membranes
,
12
(
3
), pp.
1
16
.
39.
Watson
,
J.
,
Lu
,
J.
,
de Souza
,
R.
,
Si
,
B.
,
Zhang
,
Y.
, and
Liu
,
Z.
,
2019
, “
Effects of the Extraction Solvents in Hydrothermal Liquefaction Processes: Biocrude Oil Quality and Energy Conversion Efficiency
,”
Energy
,
167
(
1
), pp.
189
197
.
40.
Magrini
,
K.
,
Wang
,
H.
, and
Li
,
Z.
,
2021
, “
Co-Processing Bio-Oils in Refineries
,”
US Department of Energy Bioenergy Technology Office (BETO), 2021 Project Peer Review
.
41.
Dell’Orco
,
S.
,
Christensen
,
E. D.
,
Iisa
,
K.
,
Starace
,
A. K.
,
Dutta
,
A.
,
Talmadge
,
M. S.
,
Magrini
,
K. A.
, and
Mukarakate
,
C.
,
2021
, “
Online Biogenic Carbon Analysis Enables Refineries to Reduce Carbon Footprint During Coprocessing Biomass- and Petroleum-Derived Liquids
,”
Anal. Chem.
,
93
(
10
), pp.
4351
4360
.
42.
Baloch
,
H. A.
,
Siddiqui
,
M. T. H.
,
Nizamuddin
,
S.
,
Mubarak
,
N. M.
,
Khalid
,
M.
,
Srinivasan
,
M. P.
, and
Griffin
,
G. J.
,
2020
, “
Solvothermal Co-Liquefaction of Sugarcane Bagasse and Polyethylene Under Sub-Supercritical Conditions: Optimization of Process Parameters
,”
Process Saf. Environ. Prot.
,
137
(
1
), pp.
300
311
.
43.
Nizamuddin
,
S.
,
Baloch
,
H. A.
,
Mubarak
,
N. M.
,
Riaz
,
S.
,
Siddiqui
,
M. T. H.
,
Takkalkar
,
P.
,
Tunio
,
M. M.
,
Mazari
,
S.
, and
Bhutto
,
A. W.
,
2019
, “
Solvothermal Liquefaction of Corn Stalk: Physico-Chemical Properties of Bio-Oil and Biochar
,”
Waste Biomass Valorization
,
10
(
7
), pp.
1957
1968
.
44.
Ha Tran
,
M.
, and
Lee
,
E. Y.
,
2020
, “
Development and Optimization of Solvothermal Liquefaction of Marine Macroalgae Saccharina japonica Biomass for Biopolyol and Biopolyurethane Production
,”
J. Ind. Eng. Chem.
,
81
(
1
), pp.
167
177
.
45.
Zhu
,
Z.
,
Rosendahl
,
L.
,
Sohail Toor
,
S.
,
Yu
,
D.
, and
Chen
,
G.
,
2015
, “
Hydrothermal Liquefaction of Barley Straw to Bio-Crude Oil: Effects of Reaction Temperature and Aqueous Phase Recirculation
,”
Appl. Energy
,
137
(
1
), pp.
183
192
.
46.
Wilson
,
A. N.
,
Dutta
,
A.
,
Black
,
B. A.
,
Mukarakate
,
C.
,
Magrini
,
K.
,
Schaidle
,
J. A.
,
Michener
,
W. E.
,
Beckham
,
G. T.
, and
Nimlos
,
M. R.
,
2019
, “
Valorization of Aqueous Waste Streams From Thermochemical Biorefineries
,”
Green Chem.
,
21
(
15
), pp.
4217
4230
.
47.
Zhang
,
L.
,
Champagne
,
P.
, and
Charles Xu
,
C.
,
2011
, “
Supercritical Water Gasification of an Aqueous By-Product From Biomass Hydrothermal Liquefaction With Novel Ru Modified Ni Catalysts
,”
Bioresource Technol.
,
102
(
17
), pp.
8279
8287
.
48.
Escobar
,
E. L. N.
,
da Silva
,
T. A.
,
Pirich
,
C. L.
,
Corazza
,
M. L.
, and
Pereira Ramos
,
L.
,
2020
, “
Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation
,”
Front. Bioeng. Biotechnol.
,
8
(
1
), pp.
1
18
.
49.
Zhang
,
X.
,
Heinonen
,
S.
, and
Levänen
,
E.
,
2014
, “
Applications of Supercritical Carbon Dioxide in Materials Processing and Synthesis
,”
RSC Adv.
,
4
(
105
), pp.
61137
61152
.
50.
Xu
,
C.
,
Xin
,
T.
,
Li
,
X.
,
Li
,
S.
,
Sun
,
Y.
,
Liu
,
W.
, and
Yang
,
Y.
,
2019
, “
A Thermodynamic Analysis of a Solar Hybrid Coal-Based Direct-Fired Supercritical Carbon Dioxide Power Cycle
,”
Energy Convers. Manag.
,
196
(
1
), pp.
77
91
.
51.
Allam
,
R. J.
,
Fetvedt
,
J. E.
,
Forrest
,
B. A.
, and
Freed
,
D. A.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
Proceedings of ASME Turbo Expo 2014 Turbine Tech. Conf. Expo.
,
Düsseldorf, Germany
,
Sept. 18
, pp.
1
9
.
52.
Halim
,
R.
,
Danquah
,
M. K.
, and
Webley
,
P. A.
,
2012
, “
Extraction of Oil From Microalgae for Biodiesel Production: A Review
,”
Biotechnol. Adv.
,
30
(
3
), pp.
709
732
.
53.
Kim
,
S. K.
,
Han
,
J. Y.
,
Hong
,
S. A.
,
Lee
,
Y. W.
, and
Kim
,
J.
,
2013
, “
Supercritical CO2-Purification of Waste Cooking oil for High-Yield Diesel-Like Hydrocarbons via Catalytic Hydrodeoxygenation
,”
Fuel
,
111
(
1
), pp.
510
518
.
54.
Strakey
,
P. A.
,
2019
, “
Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070706
.
55.
Kalina
,
J.
,
Skorek-Osikowska
,
A.
,
Bartela
,
Ł
,
Gładysz
,
P.
, and
Lampert
,
K.
,
2020
, “
Evaluation of Technological Options for Carbon Dioxide Utilization
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
090901
.
56.
Zhang
,
J.
,
Yang
,
L.
, and
Liu
,
H.
,
2021
, “
Green and Efficient Processing of Wood With Supercritical CO2: A Review
,”
Appl. Sci.
,
11
(
9
), p.
3929
.
57.
Montesantos
,
N.
, and
Maschietti
,
M.
,
2020
, “
Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery
,”
Energies
,
13
(
7
), p.
1600
.
58.
Fortier
,
M. P.
,
Roberts
,
G. W.
,
Stagg-Williams
,
S. M.
, and
Sturm
,
B. S. M.
,
2014
, “
Life Cycle Assessment of Bio-Jet Fuel From Hydrothermal Liquefaction of Microalgae
,”
Appl. Energy
,
122
(
1
), pp.
73
82
.
59.
Asafu-Adjaye
,
O.
,
Via
,
B.
,
Sastri
,
B.
, and
Banerjee
,
S.
,
2021
, “
Displacement Dewatering of Sludge With Supercritical CO2
,”
Water Res.
,
190
(
1
), p.
116764
.
60.
Dawson
,
B. S. W.
,
Pearson
,
H.
,
Kroese
,
H. W.
, and
Sargent
,
R.
,
2015
, “
Effect of Specimen Dimension and Pre-Heating Temperature on Supercritical CO2 Dewatering of Radiata Pine Sapwood
,”
Holzforschung
,
69
(
4
), pp.
421
430
.
61.
Gabitov
,
R. F.
,
Khairutdinov
,
V. F.
,
Gumerov
,
F. M.
,
Gabitov
,
F. R.
,
Zaripov
,
Z. I.
,
Gaifullina
,
R.
, and
Farakhov
,
M. I.
,
2017
, “
Drying and Impregnation of Wood With Propiconazole Using Supercritical Carbon Dioxide
,”
Russ. J. Phys. Chem. B
,
11
(
8
), pp.
1223
1230
.
62.
Pearson
,
H.
,
Dawson
,
B.
,
Kimberley
,
M.
, and
Davy
,
B.
,
2019
, “
Predictive Modelling of Supercritical CO2 Dewatering of Capillary Tubes
,”
J. Supercrit. Fluids
,
143
(
1
), pp.
198
204
.
63.
Morais
,
A. R. C.
,
Da Costa Lopes
,
A. M.
, and
Bogel-Łukasik
,
R.
,
2015
, “
Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept
,”
Chem. Rev.
,
115
(
1
), pp.
3
27
.
64.
Wang
,
Y.
,
Wang
,
H.
,
Lin
,
H.
,
Zheng
,
Y.
,
Zhao
,
J.
,
Pelletier
,
A.
, and
Li
,
K.
,
2013
, “
Effects of Solvents and Catalysts in Liquefaction of Pinewood Sawdust for the Production of Bio-Oils
,”
Biomass Bioenergy
,
59
(
1
), pp.
158
167
.
65.
Jin
,
F.
, and
Enomoto
,
H.
,
2009
, “
Hydrothermal Conversion of Biomass Into Value-Added Products: Technology That Mimics Nature
,”
BioResources
,
4
(
2
), pp.
704
713
.
66.
Saqib
,
N. U.
,
Sharma
,
H. B.
,
Baroutian
,
S.
,
Dubey
,
B.
, and
Sarmah
,
A. K.
,
2019
, “
Valorisation of Food Waste via Hydrothermal Carbonisation and Techno-Economic Feasibility Assessment
,”
Sci. Total Environ.
,
690
(
1
), pp.
261
276
.
67.
Jahromi
,
H.
,
Rahman
,
T.
,
Roy
,
P.
, and
Adhikari
,
S.
,
2022
, “
Hydrotreatment of Solvent-Extracted Biocrude From Hydrothermal Liquefaction of Municipal Sewage Sludge
,”
Energy Convers. Manag.
,
263
(
1
), p.
115719
.
68.
Montesantos
,
N.
,
Pedersen
,
T. H.
,
Nielsen
,
R. P.
,
Rosendahl
,
L.
, and
Maschietti
,
M.
,
2019
, “
Supercritical Carbon Dioxide Fractionation of Bio-Crude Produced by Hydrothermal Liquefaction of Pinewood
,”
J. Supercrit. Fluids
,
149
(
1
), pp.
97
109
.
69.
Burra
,
K. R. G.
,
Daristotle
,
N.
, and
Gupta
,
A. K.
,
2021
, “
Carbonization of Cellulose in Supercritical CO2 for Value-Added Carbon
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072105
.
70.
Naik
,
S.
,
Goud
V. V.
,
Rout
,
P. K.
, and
Dalai
,
A. K.
,
2010
, “
Supercritical CO2 Fractionation of Bio-Oil Produced From Wheat–Hemlock Biomass
,”
Bioresource Technol.
,
101
(
19
), pp.
7605
7613
.
71.
Montesantos
,
N.
,
Nielsen
,
R. P.
, and
Maschietti
,
M.
,
2020
, “
Upgrading of Nondewatered Nondemetallized Lignocellulosic Biocrude From Hydrothermal Liquefaction Using Supercritical Carbon Dioxide
,”
Ind. Eng. Chem. Res.
,
59
(
13
), pp.
6141
6153
.
72.
Montesantos
,
N.
,
Kohli
,
K.
,
Sharma
,
B. K.
, and
Maschietti
,
M.
,
2022
, “
Hydrotreatment of Supercritical Carbon Dioxide Extracts of Hydrothermal Liquefaction Lignocellulosic Biocrude
,”
Ind. Eng. Chem. Res.
,
61
(
41
), pp.
15114
15124
.
73.
Botero
,
C.
,
Field
,
R. P.
,
Brasington
,
R. D.
,
Herzog
,
H. J.
, and
Ghoniem
,
A. F.
,
2012
, “
Performance of an IGCC Plant With Carbon Capture and Coal-CO 2-Slurry Feed: Impact of Coal Rank, Slurry Loading, and Syngas Cooling Technology
,”
Ind. Eng. Chem. Res.
,
51
(
36
), pp.
11778
11790
.
74.
Botero
,
C.
,
Field
,
R. P.
,
Herzog
,
H. J.
, and
Ghoniem
,
A. F.
,
2013
, “
The Phase Inversion-Based Coal-CO2 Slurry (PHICCOS) Feeding System: Technoeconomic Assessment Using Coupled Multiscale Analysis
,”
Int. J. Greenhouse Gas Control
,
18
(
1
), pp.
150
164
.
75.
Marasigan
,
J.
,
Goldstein
,
H.
, and
Dooher
,
J.
,
2013
, “
Liquid CO2/Coal Slurry forFeeding Low Rank Coal to Gasifiers
,”
Final Technical Report to The US Department of Energy, Pittsburgh, PA
.
76.
Liu
,
P.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Zhang
,
D.
,
2019
, “
Rheological Properties and Stability Characteristics of Biochar-Algae-Water Slurry Fuels Prepared by Wet Milling
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070709
.
You do not currently have access to this content.