Abstract

The main objective of this article is to investigate sub-grid scale turbulence–radiation interaction (SGS TRI) effects on SGS turbulence kinetic energy (TKE) fluctuations and varying thermophysical properties in a partially premixed combustion system for a laboratory-piloted methane/air flame. The large eddy simulation approach is employed to simulate the turbulence of the compressible reactive flow. SGS quantities, including turbulent stress and fluxes of enthalpy and species in the sub-grid scale, are computed using the standard Smagorinsky–Lilly model. The radiative transfer equation is modeled by applying the spherical harmonic P1 approximation by considering the radiative heat source related to the SGS TRI contribution. Optically thin fluctuation approximation is utilized to simplify the radiative absorption term. A chemical reaction mechanism comprising 41 steps and 16 species is applied to model methane–air mixture combustion. Diffusion flamelet-generated manifolds are employed to govern the species transport equation. About 87% of TKE is resolved by applying the finest grid consisting of 1,822,580 cells. Impacts of SGS TRI on the spatially filtered density, eddy viscosity, SGS velocity and TKE, overall radiative emission, RMS temperature fluctuations, and nitrogen monoxide (NO) formation are studied. The results reveal that considering SGS TRI in the simulation leads to remarkable discrepancies, particularly in SGS velocity and TKE by 6.70% and 7.40%, respectively. Meanwhile, SGS density and eddy viscosity deviate negligibly in the presence of SGS TRI. Also, the filtered mass fraction of NO reduces up to 17.54% on average by considering TRI.

References

1.
Noume
,
H. C.
,
Bomba
,
V.
, and
Obounou
,
M.
,
2020
, “
Numerical Investigation of a Turbulent Jet Flame With a Compact Skeletal Mechanism
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032206
.
2.
Noume
,
H. C.
,
Bomba
,
V.
,
Obounou
,
M.
,
Fouda
,
H. E.
, and
Sapnken
,
F. E.
,
2021
, “
Computational Fluid Dynamics Study of a Nonpremixed Turbulent Flame Using Openfoam: Effect of Chemical Mechanisms and Turbulence Models
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112303
.
3.
Ibrahim
,
M. N. H.
,
Udayakumar
,
M.
,
Balasubramanian
,
D.
,
Tran
,
V. D.
,
Truong
,
T. H.
, and
Nguyen
,
V. N.
,
2023
, “
Large Eddy Simulation Studies on Effects of Soot Productivity in a Momentum Dominated Strained Diffusion Jet Flames
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042302
.
4.
Aliyu
,
M.
,
Nemitallah
,
M. A.
,
Abdelhafez
,
A.
,
Said
,
S. A.
,
Okonkwo
,
P. C.
, and
Habib
,
M. A.
,
2023
, “
Effects of Adiabatic Flame Temperature and Oxygen Concentration in CH4/N2/O2 Nonswirl Jet Flames: Experimental and Numerical Study
,”
ASME J. Energy Resour. Technol.
,
145
(
8
), p.
081201
.
5.
Song
,
T. H.
, and
Viskanta
,
R.
,
1987
, “
Interaction of Radiation With Turbulence—Application to a Combustion System
,”
J. Thermophys. Heat Transfer
,
1
(
1
), pp.
56
62
.
6.
Barlow
,
R. S.
, and
Frank
,
J. H.
,
1998
, “
Piloted CH4/Air Flames C, D, E, and F–Release 2.0, 20-JAN-2003
,”
TNF Workshop
,
Livermore, CA
,
Jan. 20
.
7.
Masri
,
A. R.
,
Dibble
,
R. W.
, and
Barlow
,
R. S.
,
1996
, “
The Structure of Turbulent Nonpremixed Flames Revealed by Raman-Rayleigh-LIF Measurements
,”
Prog. Energy Combust. Sci.
,
22
(
4
), pp.
307
362
.
8.
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2016
,
Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications
,
Springer
,
New York
. ISBN: 978-3-319-27289-4
9.
Li
,
G.
, and
Modest
,
M. F.
,
2003
, “
Importance of Turbulence-Radiation Interactions in Turbulent Diffusion jet Flames
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
831
838
.
10.
Coelho
,
P. J.
,
Teerling
,
O. J.
, and
Roekaerts
,
D. J. E. M.
,
2003
, “
Spectral Radiative Effects and Turbulence/Radiation Interaction in a Non-Luminous Turbulent Jet Diffusion Flame
,”
Combust. Flame
,
133
(
1–2
), pp.
75
91
.
11.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transf.
,
50
(
19–20
), pp.
3877
3889
.
12.
Gupta
,
A.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2013
, “
Turbulence-Radiation Interactions in Large-Eddy Simulations of Luminous and Nonluminous Nonpremixed Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1281
1288
.
13.
Mehta
,
R. S.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2009
, “
Radiation Characteristics and Turbulence-Radiation Interactions in Sooting Turbulent Jet Flames
,”
Heat Transfer Summer Conference
,
San Francisco, CA
,
July 19–23
, pp.
77
91
.
14.
Safari
,
M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Large Eddy Simulation for Prediction of Entropy Generation in a Nonpremixed Turbulent Jet Flame
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022002
.
15.
Miranda
,
F. C.
,
Coelho
,
P. J.
,
di Mare
,
F.
, and
Janicka
,
J.
,
2019
, “
Study of Turbulence-Radiation Interactions in Large-Eddy Simulation of Scaled Sandia Flame D
,”
J. Quant. Spectrosc/Radiat. Transf.
,
228
, pp.
47
56
.
16.
Fraga
,
G. C.
,
Coelho
,
P. J.
,
Petry
,
A. P.
, and
França
,
F. H. R.
,
2020
, “
Development and Testing of a Model for Turbulence-Radiation Interaction Effects on the Radiative Emission
,”
J. Quant. Spectrosc. Radiat. Transf.
,
245
, p.
106852
.
17.
Snegirev
,
A. Y.
,
2003
, “
Statistical Modeling of Thermal-Radiation Transfer in Natural-Convection Turbulent Diffusion Flames. 1. Model Construction
,”
J. Eng. Phys. Thermophys.
,
76
(
2
), pp.
287
298
.
18.
Paolucci
,
S.
,
1982
,
Filtering of sound from the Navier-Stokes equations. NASA STI/Recon Technical Report No. 83, p. 26036
.
19.
Pope
,
S. B.
, and
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cornell University, New York
.
20.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2018
, “
Modeling Strategies for Large Eddy Simulation of Lean Burn Spray Flames
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051501
.
21.
Moghaddam
,
S.
,
Bazdidi-Tehrani
,
F.
, and
Aghaamini
,
M.
,
2019
, “
Interaction Between Turbulence and Thermal Radiation in Combined Heat Transfer Channel Flows
,”
Heat Transf.—Asian Res.
,
48
(
4
), pp.
1501
1528
.
22.
Modest
,
M. F.
,
2012
, “
Further Development of the Elliptic PDE Formulation of the PN Approximation and Its Marshak Boundary Conditions
,”
Numer. Heat Transf., Part B: Fundam.
,
62
(
2–3
), pp.
181
202
.
23.
Kabashnikov
,
V. P.
, and
Myasnikova
,
G. I.
,
1985
, “
Thermal Radiation in Turbulent Flows—Temperature and Concentration Fluctuations
,”
Heat Transf.-Soviet Res.
,
17
(
6
), pp.
116
125
.
24.
Coelho
,
P. J.
,
2004
, “
Detailed Numerical Simulation of Radiative Transfer in a Nonluminous Turbulent Jet Diffusion Flame
,”
Combust. Flame
,
136
(
4
), pp.
481
492
.
25.
Wang
,
A.
, and
Wang
,
L.
,
2007
, “
Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames
,”
Radiative Transfer-V. Proceedings of the Fifth International Symposium on Radiative Transfer
,
Bodrum, Turkey
,
June, 17–22
, Begel House Inc.
26.
Nmira
,
F.
, and
Consalvi
,
J. L.
,
2022
, “
Local Contributions of Resolved and Subgrid Turbulence-Radiation Interaction in LES/Presumed FDF Modelling of Large-Scale Methaonl Pool Fires
,”
Int. J. Heat Mass Transfer
,
190
, p.
122746
.
27.
Oijen
,
J. V.
, and
Goey
,
L. D.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
28.
Bray
,
K.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2005
, “
Role of the Progress Variable in Models for Partially Premixed Turbulent Combustion
,”
Combust. Flame
,
141
(
4
), pp.
431
437
.
29.
Yifan
,
D. U. A. N.
,
Zhixun
,
X. I. A.
,
Likun
,
M. A.
,
Zhenbing
,
L. U. O.
,
Huang
,
X.
, and
Xiong
,
D. E. N. G.
,
2020
, “
LES of the Sandia Flame Series DF Using the Eulerian Stochastic Field Method Coupled With Tabulated Chemistry
,”
Chinese J. Aeronaut.
,
33
(
1
), pp.
116
133
.
30.
Yue
,
C.
,
Wang
,
J.
, and
Li
,
X.
,
2023
, “
Modeling of Sandia Flame D With the Non-Adiabatic Chemistry Tabulation Approach: The Effects of Different Laminar Flames on NO X Prediction
,”
RSC Adv.
,
13
(
7
), pp.
4590
4600
.
31.
Barlow
,
R.
, and
Frank
,
J.
,
2007
, “
Piloted Ch4/Air Flames c, d, e, and f—Release 2.1, June 15, 2007
.”
32.
Frenklach
,
M.
,
Bowman
,
C. T.
,
Smith
,
G. P.
, and
Gardiner
,
W. C.
,
1999
, World Wide Web, Version3.0 http://www. me. berkeley. edu. gri_mech.
33.
James
,
S.
,
Anand
,
M. S.
,
Razdan
,
M. K.
, and
Pope
,
S. B.
,
1999
, “
In Situ Detailed Chemistry Calculations in Combustor Flow Analyses
,”
International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
.
34.
Eymard
,
R.
,
2000
, “Finite Volume Methods,”
Handbook of Numerical Analysis
,
P. G.
Ciarlet
and
J. L.
Lions
, eds., Vol.
7
,
Elsevier
,
France
, pp.
713
1018
.
35.
Dunn
,
M. J.
,
Masri
,
A. R.
,
Bilger
,
R. W.
, and
Barlow
,
R. S.
,
2010
, “
Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames
,”
Flow, Turbul. Combust.
,
85
(
3–4
), pp.
621
648
.
36.
Kurganov
,
A.
,
Prugger
,
M.
, and
Wu
,
T.
,
2017
, “
Second-Order Fully Discrete Central-Upwind Scheme for Two-Dimensional Hyperbolic Systems of Conservation Laws
,”
SIAM J. Sci. Comput.
,
39
(
3
), pp.
A947
A965
.
37.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
2000
,
Computational Fluid Dynamics Volume I
,
Engineering Education System
,
Wichita, KS
.
38.
Muralidharan
,
B.
,
Zambon
,
A. C.
,
Hosangadi
,
A.
, and
Calhoon
,
W.
,
2018
, “
Application of a Progress Variable Based Approach for Modeling Non-Premixed/Partially Premixed Combustion Under High-Pressure Conditions
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
, p. 4560. .
39.
Bazdidi-Tehrani
,
F.
,
Teymoori
,
A.
, and
Ghiyasi
,
M.
,
2022
, “
Sensitivity Analysis of Pollutants and Pattern Factor in a Gas Turbine Model Combustor Due to Changes in Stabilizing Jets Characteristics
,”
J. Therm. Sci.
,
31
(
5
), pp.
1622
1641
.
40.
Barlow
,
R. S.
, and
Frank
,
J. H.
,
1998
, “
Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames
,”
Symposium (International) on Combustion
,
Boulder, CO
,
Aug. 2–7
, pp.
1087
1095
.
41.
Kemenov
,
K. A.
, and
Pope
,
S. B.
,
2011
, “
Molecular Diffusion Effects in LES of a Piloted Methane–Air Flame
,”
Combust. Flame
,
158
(
2
), pp.
240
254
.
42.
Bilger
,
R. W.
,
Pope
,
S. B.
,
Bray
,
K. N. C.
, and
Driscoll
,
J. F.
,
2005
, “
Paradigms in Turbulent Combustion Research
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
21
42
.
43.
Kim
,
W. W.
, and
Menon
,
S.
,
1997
, “
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows
,”
35th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, p. 210.
44.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
, pp.
129
160
.
45.
Bazdidi-Tehrani
,
F.
,
Mirzaei
,
S.
, and
Abedinejad
,
M. S.
,
2017
, “
Influence of Chemical Mechanisms on Spray Combustion Characteristics of Turbulent Flow in a Wall Jet Can Combustor
,”
Energy Fuels
,
31
(
7
), pp.
7523
7539
.
46.
Zeldovich
,
Y. A.
,
Frank-Kamenetskii
,
D.
, and
Sadovnikov
,
P.
,
1947
, “
Oxidation of Nitrogen in Combustion
,” Publishing House of the Acad of Sciences of USSR.
You do not currently have access to this content.