Abstract

This paper presents a feasibility study of a hybrid compost waste heat to power/Concentrating Solar Panel (CSP) green energy Organic Rankine Cycle (ORC). The power plant is baselined to operate with a duty of 24/7 on compost waste heat and utilize solar thermal energy to boost power output during the day. This paper discusses the design of the power plant, the design of a compost driven heat exchanger/boiler, compost pile thermal analysis, CSP analysis, and simulated power plant output analysis The selection of isobutane as ORC working fluid is justified herein. A Levelized Cost of Energy (LCOE) analysis was performed to ensure that the energy produced by this hybrid power plant would come at a reasonable and competitive cost. The results herein show that the hybrid power plant affords an LCOE of 4 ¢/kWh for compost operation alone and an LCOE of 10.7 ¢/kWh for compost and CSP solar energy operation. The hybrid compost/ORC power plant presented herein affords an average energy conversion efficiency of 4.3%. Centric to the operation of the compost waste heat to power plant presented herein is the correct design and selection of the heat exchanger which interfaces the compost waste heat stream to the isobutane ORC. The design and analysis of this heat exchanger as well as commercially off-the-shelf hardware to meet the specifications is given in detail herein

References

1.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
.
2.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology-Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
.
3.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
.
4.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
5.
Yaïci
,
W.
,
Entchev
,
E.
,
Talebizadehsardari
,
P.
, and
Longo
,
M.
,
2021
, “
Performance Investigation of Solar Organic Rankine Cycle System With Zeotropic Working Fluid Mixtures for use in Micro-Cogeneration
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090905
.
6.
Facaõ
,
J.
, and
Oliveira
,
A. C.
,
2009
, “
Analysis of Energetic, Design and Operational Criteria When Choosing an Adequate Working Fluid for Small ORC Systems
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Lake Buena Vista, FL
,
Nov. 13–19
, Vol.
43796
, pp.
175
180
.
7.
Pasinato
,
H. D.
,
2020
, “
Working Fluid Dependence on Source Temperature for Organic Rankine Cycles
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012103
.
8.
Hung
,
T. C.
,
Wang
,
S. K.
,
Kuo
,
C. H.
,
Pei
,
B. S.
, and
Tsai
,
K. F.
,
2010
, “
A Study of Organic Working Fluids on System Efficiency of an ORC Using Low-Grade Energy Sources
,”
Energy
,
35
(
3
), pp.
1403
1411
.
9.
Fergani
,
Z.
,
Morosuk
,
T.
, and
Touil
,
D.
,
2020
, “
Performances Optimization and Comparison of Two Organic Rankine Cycles for Cogeneration in the Cement Plant
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022001
.
10.
Leibowitz
,
H.
,
Smith
,
I. K.
, and
Stosic
,
N.
,
2006
, “
Cost-Effective Small-Scale ORC Systems for Power Recovery From low Grade Heat Sources
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Chicago, IL
,
Nov. 5–6
, Vol.
47640
, pp.
521
527
.
11.
Stand
,
L. M.
,
Ochoa
,
G. V.
, and
Forero
,
J. D.
,
2021
, “
Energy and Exergy Assessment of a Combined Supercritical Brayton Cycle-Orc Hybrid System Using Solar Radiation and Coconut Shell Biomass as Energy Source
,”
Renewable Energy
,
175
, pp.
119
142
.
12.
Minea
,
V.
,
2014
, “
Power Generation With ORC Machines Using Low-Grade Waste Heat or Renewable Energy
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
143
154
.
13.
Manegdeg
,
R. F.
,
Rollon
,
A.
,
Ballesteros
,
F.
,
Magdaluyo
,
E.
,
De Sales-Papa
,
L.
,
Clemente
,
E.
,
Macapinlac
,
E.
,
Ibañez
,
R.
, and
Cervera
,
R. B.
,
2022
, “
Multi-Attribute Assessment of Waste-to-Energy Technologies for Medical, Industrial, and Electronic Residual Wastes
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070908
.
14.
Espindola
,
J.
,
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Rice Husk and Chicken Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022101
.
15.
Qandil
,
M. D.
,
Abbas
,
A. I.
,
Salem
,
A. R.
,
Abdelhadi
,
A. I.
,
Hasan
,
A.
,
Nourin
,
F. N.
,
Abousabae
,
M.
,
Selim
,
O. M.
,
Espindola
,
J.
, and
Amano
,
R. S.
,
2021
, “
Net Zero Energy Model for Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122101
.
16.
Rankin
,
M. J.
,
Trabold
,
T. A.
,
Williamson
,
A. A.
, and
Augustine
,
M.
,
2012
, “
Analysis of Dairy Manure and Food Manufacturing Waste as Feedstocks for Sustainable Energy Production via Anaerobic Digestion
,”
Proceedings of the ASME 2012 6th International Conference on Energy Sustainability Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. ASME 2012 6th International Conference on Energy Sustainability, Parts A and B
,
San Diego, CA
,
July 23–26
, pp.
759
767
.
17.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
18.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-Pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
19.
Burra
,
K. R. G.
,
Fernández Hernández
,
I.
,
Castaldi
,
M. J.
,
Goff
,
S.
, and
Gupta
,
A. K.
,
2023
, “
Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
021701
.
20.
Irvine
,
G.
,
Lamont
,
E. R.
, and
Antizar-Ladislao
,
B.
,
2010
, “
Energy From Waste: Reuse of Compost Heat as a Source of Renewable Energy
,”
Int. J. Chem. React. Eng.
,
2010
, pp.
1
10
.
21.
Smith
,
M. M.
, and
Aber
,
J. D.
,
2014
, “
Heat Recovery From Compost
,”
BioCycle
,
55
(
2
).
22.
Klejment
,
E.
, and
Rosiński
,
M.
,
2008
, “
Testing of Thermal Properties of Compost From Municipal Waste With a View to Using It as a Renewable, Low Temperature Heat Source
,”
Bioresour. Technol.
,
99
(
18
), pp.
8850
8855
.
23.
Mahmoudi
,
A.
,
Fazli
,
M.
, and
Morad
,
M. R.
,
2018
, “
A Recent Review of Waste Heat Recovery by Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
143
, pp.
660
675
.
24.
Tchanche
,
B. F.
,
Pétrissans
,
M.
, and
Papadakis
,
G.
, “
Heat Resources and Organic Rankine Cycle Machines
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
1184
1199
.
25.
Wang
,
J.
,
Yan
,
Z.
,
Wang
,
M.
,
Ma
,
S.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of an (Organic Rankine Cycle) ORC Using Low Grade Heat Source
,”
Energy
,
49
, pp.
356
365
.
26.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Somayaji
,
C.
,
2007
, “
Performance Analysis of Different Working Fluids for Use in Organic Rankine Cycles
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
221
(
3
), pp.
255
263
.
27.
Thurairaja
,
K.
,
Wijewardane
,
A.
,
Jayasekara
,
S.
, and
Ranasinghe
,
C.
,
2019
, “
Working Fluid Selection and Performance Evaluation of ORC
,”
Energy Procedia
,
156
, pp.
244
248
.
28.
Liu
,
B. T.
,
Chien
,
K. H.
, and
Wang
,
C. C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
(
8
), pp.
1207
1217
.
29.
Zhai
,
H.
,
An
,
Q.
,
Lemort
,
V.
, and
Quoilin
,
S.
,
2016
, “
Categorization and Analysis of Heat Sources for Organic Rankine Cycle Systems
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
790
805
.
30.
Wang
,
Z. Q.
,
Zhou
,
N. J.
,
Guo
,
J.
, and
Wang
,
X. Y.
,
2012
, “
Fluid Selection and Parametric Optimization of Organic Rankine Cycle Using Low Temperature Waste Heat
,”
Energy
,
40
(
1
), pp.
107
115
.
31.
Bajko
,
J.
,
Fišer
,
J.
, and
Jícha
,
M.
,
2019
, “
Condenser-Type Heat Exchanger for Compost Heat Recovery Systems
,”
Energies
,
12
(
8
), p.
1583
.
32.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2021
,
CoolProp
. www.coolprop.org.
33.
The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
,
2019
,
ASHRAE Refrigerant Designations
. https://www.ashrae.org/technical-resources/standards-and-guidelines/ashrae-refrigerant-designations.
34.
Boyd
,
T.
, and
DiPippo
,
R.
,
2011
,
Technical Assessment of the Combined Heat and Power Plant, at the Oregon Institute of Technology, Klamath Falls, Oregon. Earth
.
35.
Cong
,
C. E.
,
Velautham
,
S.
, and
Darus
,
A. N.
,
2005
, “
Solar Thermal Organic Rankine Cycle as a Renewable Energy Option
,”
Jurnal Mekanikal, Dec
, (
20
), pp.
68
77
.
36.
Smith
,
M. M.
, and
Aber
,
J. D.
,
2018
, “
Energy Recovery From Commerical-Scale Composting as a Novel Waste Management Strategy
,”
Appl. Energy
,
211
, pp.
194
199
.
37.
Epstein
,
E.
,
2011
,
Industrial Composting
,
CRC Press
,
Boca Raton, FL
.
38.
39.
Musgrove
,
G.
,
LePierres
,
R.
, and
Nash
,
J.
,
2014
, “
Heat Exchangers for Supercritical CO2 Power Cycle Applications
,”
Proceedings of the 4th International Symposium on Supercritical CO2 Power Cycles
,
Pittsburgh, PA
,
Sept. 9–10
.
40.
Shah
,
M. M.
,
1982
,
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,
ASHRAE Trans.
,
United States
,
88
.
41.
Holman
,
J. P.
,
1986
,
Heat Transfer
, 6th ed.,
McGraw-Hill
,
New York
,
292
296
.
42.
Melling
,
A.
,
Noppenberger
,
S.
,
Still
,
M.
, and
Venzke
,
H.
,
1997
, “
Interpolation Correlations for Fluid Properties of Humid air in the Temperature Range 100 C to 200 C
,”
J. Phys. Chem. Ref. Data
,
26
(
4
), pp.
1111
1123
.
43.
Huang
,
L.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2014
, “
Uncertainty Analysis on Prediction of Heat Transfer Coefficient and Pressure Drop in Heat Exchangers due to Refrigerant Property Prediction Error
,”
International Refrigeration and Air Conditioning Conference
, Purdue University. https://docs.lib.purdue.edu/iracc/1399/
44.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2016
,
Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications
,
Academic Press
,
Cambridge, MA
.
45.
Kesseli
,
D.
,
Wagner
,
M.
,
Guédez
,
R.
, and
Turchi
,
C. S.
,
2019
, “
CSP-plant Modeling Guidelines and Compliance of the System Advisor Model (SAM)
,”
AIP Conf. Proc.
,
2126
(
1
), p.
170006
.
AIP Publishing LLC
.
46.
National Renewable Energy Laboratory (NREL)
,
2021
,
Levelized Cost of Energy Calculator
. https://www.nrel.gov/analysis/tech-lcoe.html.
47.
United States Department of Energy
,
2016
,
Combined Heat and Power Technology
. https://www.energy.gov/sites/prod/files/2016/09/f33/CHP-Steam%20Turbine.pdf
48.
RSMeans Data
,
2020
,
RSMeans Data Estimator
. https://www.rsmeans.com/.
49.
National Renewable Energy Laboratory (NREL)
,
2015
,
Parabolic Trough Collector Cost
. https://www.nrel.gov/docs/fy16osti/65228.pdf
50.
Statistica
,
2020
,
Fixed And Variable Costs for the Operation and Maintenance of New Power Plants in the United States in 2020
, https://www.statista.com/statistics/519144/power-plant-operation-and-maintenance-costs-in-the-us-by-technology/.
51.
Altun
,
A. F.
, and
Kilic
,
M.
,
2020
, “
Thermodynamic Performance Evaluation of a Geothermal ORC Power Plant
,”
Renewable Energy
,
148
, pp.
261
274
.
You do not currently have access to this content.