Abstract

Shales are clastic sedimentary rocks consisting mainly of clays, quartz, calcite, and fragments of organic matters. The latter is present as finely dispersed inclusions within the shale matrix. Organic matters, also known as kerogen, are microstructures with their petrophysics being characteristically different from other constituents in the shale matrix. Despite their existence as micro- and nanoscale constituents, kerogen is capable of storing a significant amount of gas in the sorbed form due to its relatively large surface area. Kerogen can be created on a computational platform to delineate crucial reservoir aspects such as porosity, pore size distribution, adsorption behavior, and self-diffusivity. Kerogen's characteristics were found to be characteristically different from typical sedimentary rocks. These properties are crucial in the assessment of kerogen's storing capacity. In this study, several kerogen prototypes were formed to evaluate the microporous media of organic-rich shales for their potential of sequestrating greenhouse gases such as methane and carbon dioxide. To add to the discourse on the kerogen assessment, a concise review of the well-known storage and transport models was summarized and presented. These models are different from the classical ones applied to the typical porous media. Additional parameters accounting for the non-Darcian transport and the storage of sorbed fluid are used.

References

1.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME. J. Energy Resour. Technol.
,
140
(
5
), p.
054502
.
2.
Klaver
,
J.
,
Desbois
,
G.
,
Littke
,
R.
, and
Urai
,
J. L.
,
2016
, “
BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples From the Hils Area, Germany
,”
Int. J. Coal Geol.
,
158
, pp.
78
89
.
3.
Sanaei
,
A.
,
Ma
,
Y.
, and
Jamili
,
A.
,
2018
, “
Nanopore Confinement and Pore Connectivity Considerations in Modeling Unconventional Resources
,”
ASME. J. Energy Resour. Technol.
,
141
(
1
), p.
012904
.
4.
Wang
,
J.
,
Gu
,
D.
,
Guo
,
W.
,
Zhang
,
H.
, and
Yang
,
D.
,
2018
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME. J. Energy Resour. Technol.
,
141
(
1
), p.
012907
.
5.
Heller
,
R.
,
Vermylen
,
J.
, and
Zoback
,
M.
,
2014
, “
Experimental Investigation of Matrix Permeability of Gas Shales
,”
AAPG Bull.
,
98
(
5
), pp.
975
995
.
6.
Alafnan
,
S. F. K.
, and
Akkutlu
,
I. Y.
,
2018
, “
Matrix–Fracture Interactions During Flow in Organic Nanoporous Materials Under Loading
,”
Transp. Porous Med.
,
121
(
1
), pp.
69
92
.
7.
Alafnan
,
S.
,
Solling
,
T.
, and
Mahmoud
,
M.
,
2020
, “
Effect of Kerogen Thermal Maturity on Methane Adsorption Capacity: A Molecular Modeling Approach
,”
Molecules
,
25
(
16
), p.
3764
.
8.
Down
,
A. L.
, and
Himus
,
G. W.
,
1941
, “
A Preliminary Study of the Chemical Constitution of Kerogen
,”
J. Inst. Pet.
,
27
, pp.
426
445
.
9.
Forsman
,
J. P.
, and
Hunt
,
J. M.
,
1958
, “
Insoluble Organic Matter (Kerogen) in Sedimentary Rocks
,”
Geochim. Cosmochim. Acta
,
15
(
3
), pp.
170
182
.
10.
van Krevelen
,
D. W.
,
1961
,
Coal: Typology—Chemistry—Physics—Constitution
, 1st ed.,
Elsevier
,
The Netherlands
.
11.
Durand
,
B.
, and
Espitalié
,
J.
,
1973
, “Evolution of Organic Matter During Sediment Burial,”
C. R. Acad. Sci.
,
276
, pp.
2253
2256
.
12.
Tissot
,
B.
,
Durand
,
B.
,
Espitalié
,
J.
, and
Combaz
,
A.
,
1974
, “
Influence of Nature and Diagenesis of Organic Matter in Formation of Petroleum
,”
Am. Assoc. Pet. Geol. Bull.
,
58
, pp.
499
506
.
13.
Durand
,
B.
,
Nicaise
,
G.
,
Roucaché
,
J.
,
Vandenbroucke
,
M.
, and
Hagemann
,
H. W.
,
1977
, “Geochemical Study of a Series of Coals,”
Advances in Organic Geochemistry 1975
,
R.
Campos
, and
J.
Goñi
, eds.,
ENADIMSA
,
Madrid
, pp.
601
631
.
14.
Tissot
,
B.
, and
Vandenbroucke
,
M.
,
1983
, “Geochemistry and Pyrolysis of Oil Shales,”
Geochemistry and Chemistry of Oil Shales, ACS Symposium Series
, vol.
230
,
F. P.
Miknis
, and
J. F.
McKay
, eds.,
American Chemical Society
,
Washington, DC
, pp.
1
11
.
15.
Albrecht
,
P.
,
Vandenbroucke
,
M.
, and
Mandengué
,
M.
,
1976
, “
Geochemical Studies on the Organic Matter From the Douala Basin (Cameroon)-I. Evolution of the Extractable Organic Matter and the Formation of Petroleum
,”
Geochim. Cosmochim. Acta
,
40
(
7
), pp.
791
799
.
16.
Tang
,
X.
,
Jiang
,
Z.
,
Jiang
,
S.
,
Wang
,
P.
, and
Xiang
,
C.
,
2016
, “
Effect of Organic Matter and Maturity on Pore Size Distribution and Gas Storage Capacity in High-Mature to Post-Mature Shales
,”
Energy Fuels
,
30
, pp.
8985
8996
.
17.
Zhang
,
Y.
,
He
,
Z.
,
Jiang
,
S.
,
Lu
,
S.
,
Xiao
,
D.
,
Chen
,
G.
, and
Zhao
,
J.
,
2018
, “
Factors Affecting Shale Gas Accumulation in Overmature Shales Case Study From Lower Cambrian Shale in Western Sichuan Basin, South China
,”
Energy Fuels
,
32
(
3
), pp.
3003
3012
.
18.
Guo
,
X.
,
Huang
,
Z.
,
Ding
,
X.
,
Chen
,
J.
,
Chen
,
X.
, and
Wang
,
R.
,
2018
, “
Characterization of Continental Coal-Bearing Shale and Shale Gas Potential in Taibei Sag of the Turpan-Hami Basin, NW China
,”
Energy Fuels
,
32
, pp.
9055
9069
.
19.
Wasaki
,
A.
, and
Akkutlu
,
I. Y.
,
2015
, “
Permeability of Organic-Rich Shale
,”
SPE J.
,
20
(
06
), pp.
1384
1396
.
20.
Cai
,
J.
,
Lin
,
D.
,
Singh
,
H.
,
Zhou
,
S.
,
Meng
,
Q.
, and
Zhang
,
Q.
,
2019
, “
A Simple Permeability Model for Shale Gas and Key Insights on Relative Importance of Various Transport Mechanisms
,”
Fuel
,
252
, pp.
210
219
.
21.
Yanfeng
,
H.
,
Jingye
,
C.
,
Xiangji
,
D.
, and
Xiang
,
W.
,
2017
, “
Research on Shale Gas Transportation and Apparent Permeability in Nanopores
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
450
457
.
22.
Chen
,
Y. D.
, and
Yang
,
R. T.
,
1991
, “
Concentration Dependence of Surface Diffusion and Zeolitic Diffusion
,”
AIChE J
,
37
(
10
), pp.
1579
1582
.
23.
Geng
,
L.
,
Li
,
G.
,
Zitha
,
P.
, and
Tian
,
S.
,
2016
, “
A fractal permeability model for shale gas flow through heterogeneous matrix systems
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
593
604
.
24.
Psarras
,
P.
,
Holmes
,
R.
,
Vishal
,
V.
, and
Wilcox
,
J.
,
2017
, “
Methane and CO2 Adsorption Capacities of Kerogen in the Eagle Ford Shale From Molecular Simulation
,”
Acc. Chem. Res.
,
50
(
8
), pp.
1818
1828
.
25.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
,
2016
, “
Investigation of CO2–CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012909
.
26.
Du
,
X.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X.
(,
2017
). “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale
.”
ASME J. Energy Resour. Technol.
140
(1), p.
012907
.
27.
Sui
,
H.
,
Pei
,
P.
,
Su
,
Q.
,
Ding
,
W.
, and
Mao
,
R.
,
2019
, “
Study of Temperature Effects on Economic Performance of CO2 Enhanced Shale Gas Recovery
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032903
.
28.
Gu
,
M.
,
Xian
,
X.
,
Duan
,
S.
, and
Du
,
X.
,
2017
, “
Influences of the Composition and Pore Structure of a Shale on Its Selective Adsorption of CO2 Over CH4
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
296
306
.
29.
Liu
,
Z.
,
Zhang
,
Z.
,
Lu
,
Y.
,
Ki Choi
,
S.
, and
Liu
,
X.
,
2017
, “
Sorption Hysteresis Characterization of CH4 and CO2 on Anthracite, Bituminous Coal, and Lignite at Low Pressure
,”
ASME J. Energy Resour. Technol
,
140
(
1
), p.
012203
.
30.
Du
,
X.
,
Wu
,
T.
,
Sun
,
F.
,
Hou
,
Z.
,
Liu
,
Z.
, and
Huo
,
L.
,
2019
, “
Adsorption Equilibrium and Thermodynamic Analysis of CO2 and CH4 on Qinshui Basin Anthracite
,”
Geofluids
,
2019
, p.
8268050
.
31.
Harpalani
,
S.
,
Prusty
,
B. K.
, and
Dutta
,
P.
,
2006
, “
Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration
,”
Energy Fuels
,
20
(
4
), pp.
1591
1599
.
32.
Burlingame
,
A. L.
,
Haug
,
P. A.
,
Schnoes
,
H. K.
, and
Simoneit
,
B. R.
,
1969
, “Fatty Acids Derived From the Green River Formation Oil Shale by Extractions and Oxidations—A Review,”
Advances in Organic Geochemistry 1968
,
P. A.
Schenck
, and
I.
Havenaar
, eds.,
Pergamon Press
,
Oxford
, pp.
85
129
.
33.
Djuricić
,
M.
,
Murphy
,
R. C.
,
Vitorović
,
D.
, and
Biemann
,
K.
,
1971
, “
Organic Acids Obtained by Alkaline Permanganate Oxidation of Kerogen From the Green River (Colorado) Shale
,”
Geochim. Cosmochim. Acta
,
35
(
12
), pp.
1201
1207
.
34.
Yen
,
T. F.
,
1976
, “Structural Aspects of Organic Components in Oil Shales,”
Oil Shale, Developments in Petroleum Science
, vol.
5
,
T. F.
Yen
, and
G. V.
Chilingarian
, eds.,
Elsevier
,
Amsterdam
, pp.
129
148
.
35.
Tissot
,
B.
,
Deroo
,
G.
, and
Hood
,
A.
,
1978
, “
Geochemical Study of the Uinta Basin: Formation of Petroleum From the Green River Formation
,”
Geochim. Cosmochim. Acta
,
42
(
10
), pp.
1469
1485
.
36.
Vandenbroucke
,
M.
, and
Largeau
,
C.
,
2007
, “
Kerogen Origin, Evolution and Structure
,”
Org. Geochem.
,
38
(
5
), pp.
719
833
.
37.
Vandenbroucke
,
M.
,
1980
, “Structure of Kerogens as Seen by Investigations on Soluble Extracts,”
Kerogen, Insoluble Organic Matter From Sedimentary Rocks
,
B.
Durand
, ed.,
Editions Technip
,
Paris
, pp.
415
443
.
38.
Behar
,
F.
, and
Vandenbroucke
,
M.
,
1987
, “
Chemical Modelling of Kerogens
,”
Org. Geochem.
,
11
(
1
), pp.
15
24
.
39.
Ungerer
,
P.
,
Rigby
,
D.
,
Leblanc
,
B.
, and
Yiannourakou
,
M.
,
2014
, “
Sensitivity of the Aggregation Behavior of Asphaltenes to Molecular Weight and Structure Using Molecular Dynamics
,”
Mol. Sim. J.
,
40
(
1–3
), pp.
115
122
.
40.
Ungerer
,
P.
,
Collell
,
J.
, and
Yiannourakou
,
M.
,
2014
, “
Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity
,”
Energy Fuels
,
29
(
1
), pp.
91
105
.
41.
Waldman
,
M.
, and
Hagler
,
A. T.
,
1993
, “
New Combining Rules for Rare Gas Van der Waals Parameters
,”
J. Comput. Chem.
,
14
(
9
), pp.
1077
1084
.
42.
Bradford Barber
,
C.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Soft.
,
22
(
4
), pp.
469
483
.
43.
Alafnan
,
S.
,
2021
, “
Petrophysics of Kerogens Based on Realistic Structures
,”
ACS Omega
,
6
(
14
), pp.
9549
9558
.
44.
Alafnan
,
S.
,
Sultan
,
A. S.
, and
Aljaberi
,
J.
,
2020
, “
Molecular Fractionation in the Organic Materials of Source Rocks
,”
ACS Omega
,
5
(
30
), pp.
18968
18974
.
45.
Alafnan
,
S.
,
Yusuf
,
F.
,
Mansour
,
O.
,
Alsamadony
,
K.
,
Awotunde
,
A.
, and
Aljawad
,
M.
,
2020
, “
Enhanced Recovery From Organic-Rich Shales Through Carbon Dioxide Injection: Molecular-Level Investigation
,”
Energy Fuels
,
34
(
12
), pp.
16089
16098
.
46.
Aljaberi
,
J.
,
Alafnan
,
S.
,
Glatz
,
G.
,
Sultan
,
A. S.
, and
Afagwu
,
C.
,
2020
, “
The Impact of Kerogen Tortuosity on Shale Permeability
,”
SPE J.
,
26
(
02
), pp.
765
779
.
47.
Afagwu
,
C.
,
Al-Afnan
,
S.
,
Patil
,
S.
,
Aljaberi
,
J.
,
Mahmoud
,
M. A.
, and
Li
,
J.
,
2021
, “
The Impact of Pore Structure and Adsorption Behavior on Kerogen Tortuosity
,”
Fuel
,
303
, p.
121261
.
48.
King
,
G. R.
,
1990
, “
Material Balance Techniques for Coal Seam and Devonian Shale Gas Reservoirs
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
, Sept.
23–26
.
49.
Clarkson
,
C. R.
, and
McGovern
,
J. M.
,
2001
, “
Study of the Potential Impact of Matrix Free Gas Storage upon Coalbed Gas Reserves and Production Using a New Material Balance Equation
,”
International Coalbed Methane Symposium
,
Tuscaloosa, AL
, pp.
14
18
.
50.
Ambrose
,
R. J.
,
Hartman
,
R. C.
,
Diaz-Campos
,
M.
,
Akkutlu
,
I. Y.
, and
Sondergeld
,
C. H.
,
2012
, “
Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
,”
SPE J.
,
17
(
1
), pp.
219
229
.
51.
Mahmoud
,
M.
,
2019
, “
Effect of Gas Adsorption on the Estimation of Gas in Place (GIP) in Conventional and Unconventional Reservoirs
,”
Arab. J. Sci. Eng.
,
44
, pp.
6205
6214
.
52.
Mengal
,
S. A.
,
2010
, “
Accounting for Adsorbed Gas and Its Effect on Production Behavior of Shale Gas Reservoirs
,”
MS thesis
,
Texas A&M University
,
College Station, TX
.
53.
Comiti
,
J.
, and
Renaud
,
M.
,
1989
, “
A New Model for Determining Mean Structure Parameters of Fixed Beds From Pressure Drop Measurements: Application to Beds Packed With Parallelepipedal Particles
,”
Chem. Eng. Sci.
,
44
(
7
), pp.
1539
1545
.
54.
Coleman
,
S. W.
, and
Vassilicos
,
J. C.
,
2008
, “
Transport Properties of Saturated and Unsaturated Porous Fractal Materials
,”
Phys. Rev. Lett.
,
100
(
3
), pp.
1
4
.
55.
Gonciaruk
,
A.
,
Hall
,
M. R.
,
Fay
,
M. W.
,
Parmenter
,
C. D. J.
,
Vane
,
C. H.
,
Khlobystov
,
A. N.
, and
Ripepi
,
N.
,
2021
, “
Kerogen Nanoscale Structure and CO2 Adsorption in Shale Micropores
,”
Sci. Rep.
,
11
(
1
), pp.
1
13
.
56.
Wu
,
K.
,
Li
,
X.
,
Wang
,
C.
,
Yu
,
W.
, and
Chen
,
Z.
,
2015
, “
A Model for Surface Diffusion of Adsorbed gas in Nanopores of Shale Gas Reservoirs
,”
The Offshore Technology Conference
,
Houston, TX
, vol. 1, pp.
199
221
.
You do not currently have access to this content.