Abstract

The viscosity of extra-heavy oils including bitumen can be reduced significantly by adding solvent such as toluene to enhance extraction, production, and transportation. Thus, prediction of viscosity and/or rheology of bitumen-solvent mixtures has become necessary. More so, selecting a suitable rheological model for simulation of flow in porous media has an important role to play in engineering design of production and processing systems. While several mixing rules have been applied to calculate the viscosity of bitumen-solvent mixtures, rheological model to describe the flow characteristics has rarely been published. Thus, in this investigation, rheological behavior of bitumen and bitumen-toluene mixtures (weight fractions of bitumen WB = 0, 0.25, 0.5, 0.6, 0.75, and 1 w/w) have been studied at the flow temperature (75 °C) of the bitumen and in the range of shear rates between 0.001 and 1000 s−1. The data were fitted using different rheological models including the Power law, Cross model, Carreau–Yasuda model, and the newly introduced ones herein named as Cross-Logistic and Logistic models. Then, a computational fluid dynamics (CFD) model was built using a scanning electron microscope (SEM) image of rock sample (representing a realistic porous geometry) to simulate pore scale flow characteristics. The observations revealed that the original bitumen exhibits a Newtonian behavior within the low shear rate region (0.001–10 s−1) and shows a non-Newtonian (pseudoplastic) behavior at the higher shear rate region (100–1000 s−1). Conversely, the bitumen-toluene mixtures show shear thinning (pseudoplastic) behavior at low shear rate region (0.001–0.01), which appears to become less significant within 0.01 to 0.1 s−1, and exhibit shear independent Newtonian behavior within 0.1 and 1000 s−1 shear rates. Moreover, except for the original bitumen, statistical error analysis of prediction ability of the tested rheological models as well as the results from the pore scale flow parameters suggested that the Power law might not be suitable for predicting the flow characteristics of the bitumen–toluene mixtures compared to the other models.

References

1.
Speight
,
J. G.
,
2009
,
Enhanced Recovery Methods for Heavy Oil and Tar Sands
,
Gulf Publishing Company
,
Houston, TX
.
2.
Lesueur
,
D.
,
2009
, “
The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification
,”
Adv. Colloid Interface Sci.
,
145
(
1–2
), pp.
42
82
.
3.
Redelius
,
P.
, and
Soenen
,
H.
,
2015
, “
Relation Between Bitumen Chemistry and Performance
,”
Fuel
,
140
, pp.
34
43
.
4.
Alade
,
O. S.
,
Hamdy
,
M.
,
Mohamed
,
M.
,
Al Shehri
,
D. A.
,
Mokheimer
,
E.
,
Patil
,
S.
, and
Al-Nakhli
,
A.
,
2020
, “
A Preliminary Assessment of Thermochemical Fluid for Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
186
, p.
106702
.
5.
Lee
,
J.
, and
Babadagli
,
T.
,
2018
, “
Comprehensive Methodology for Chemicals and Nano Materials Screening for Heavy Oil Recovery Using Microemulsion Characterization
,”
J. Pet. Sci. Eng.
,
171
, pp.
1099
1112
.
6.
Alade
,
O. S.
,
Ademodi
,
B.
,
Sasaki
,
K.
,
Sugai
,
Y.
,
Kumasaka
,
J.
, and
Ogunlaja
,
A. S.
,
2016
, “
Development of Models to Predict the Viscosity of a Compressed Nigerian Bitumen and Rheological Properties of its Emulsions
,”
J. Pet. Sci. Eng.
,
145
, pp.
711
722
.
7.
Mohammadmoradi
,
P.
,
Taheri
,
S.
,
Bryant
,
S. L.
, and
Kantzas
,
A.
,
2018
, “
Solvent Diffusion and Dispersion in Partially Saturated Porous Media: An Experimental and Numerical Pore-Level Study
,”
Chem. Eng. Sci.
,
191
, pp.
300
317
.
8.
Nourozieh
,
H.
,
Ranjbar
,
E.
,
Kumar
,
A.
,
Forrester
,
K.
, and
Sadeghi
,
M.
,
2020
, “
Nonlinear Double-Log Mixing Rule for Viscosity Calculation of Bitumen/Solvent Mixtures Applicable for Reservoir Simulation of Solvent-Based Recovery Processes
,”
SPE J.
,
25
(
2020
), pp.
2648
2662
.
9.
Alade
,
O. S.
,
Al Shehri
,
D. A.
,
Mahmoud
,
M.
,
Olusegun
,
S.
,
Owolabi
,
S.
, and
Kamal
,
S. M.
,
2021
, “
Viscosity Models for Bitumen–Solvent Mixtures
,”
J. Pet. Explor. Prod. Technol.
,
11
, pp.
1505
1520
.
10.
Azinfar
,
B.
,
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2018
, “
Characterization of Heavy Crude Oils and Residues Using Combined Gel Permeation Chromatography and Simulated Distillation
,”
Fuel
,
233
, pp.
885
893
.
11.
Haddadnia
,
A.
,
Sadeghi Yamchi
,
H.
,
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2018
, “
New Solubility and Viscosity Measurements for Methane-, Ethane-, Propane-,and Butane-Athabasca Bitumen Systems at High Temperatures up to 260 °C
,”
J. Chem. Eng. Data
,
63
(
9
), pp.
3566
3571
.
12.
Imai
,
M.
,
Nishioka
,
I.
,
Nakano
,
M.
, and
Kaneko
,
M.
,
2013
, “
How Heavy Gas Solvents Reduce Heavy Oil Viscosity
,”
SPE
, p.
165451
.
13.
Chen
,
Z.
,
Li
,
X.
, and
Yang
,
D.
,
2019
, “
Quantification of Viscosity for Solvents−Heavy Oil/Bitumen Systems in the Presence of Water at High Pressures and Elevated Temperatures
,”
Ind. Eng. Chem. Res.
,
58
(
2
), pp.
1044
1054
.
14.
Sherratt
,
J.
,
Sharifi Haddad
,
A.
, and
Rafati
,
R.
,
2018
, “
Hot Solvent-Assisted Gravity Drainage in Naturally Fractured Heavy Oil Reservoirs: A New Model and Approach to Determine Optimal Solvent Injection Temperature
,”
Ind. Eng. Chem. Res.
,
57
(
8
), pp.
3043
3058
.
15.
Zhang
,
K.
,
Zhou
,
X.
,
Peng
,
X.
, and
Zeng
,
F.
,
2019
, “
A Comparison Study Between N-Solv Method and Cyclic Hot Solvent Injection (CHSI) Method
,”
J. Pet. Sci. Eng.
,
173
, pp.
258
268
.
16.
Pathak
,
V.
,
2011
, “
Heavy Oil and Bitumen Recovery by Hot Solvent Injection: An Experimental and Computational Investigation
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 30–Nov. 2
,
17.
Meng
,
L.
,
Kordestany
,
A.
,
Maini
,
B.
, and
Dong
,
M.
,
2020
, “
Experimental Study of Diffusion of Vaporized Solvent in Bitumen at Elevated Temperatures
,”
Fuel
,
280
, p.
118595
.
18.
Sorbie
,
K. S.
,
1991
,
Polymer-Improved Oil Recovery
,
Blackie; CRC Press
,
Glasgow: Boca Raton, FL
.
19.
Gallagher
,
M. T.
,
Wain
,
R. A. J.
,
Dari
,
S.
,
Whitty
,
J. P.
, and
Smith
,
D. J.
,
2019
, “
Non-Identifiability of Parameters for a Class of Shear-Thinning Rheological Models, With Implications for Haematological Fluid Dynamics
,”
J. Biomech.
,
6
(
85
), pp.
230
238
.
20.
Galindo-Rosales
,
F. J.
,
Rubio-Hernández
,
S. A.
, and
Ewoldt
,
R. H.
,
2011
, “
How Dr. Malcom M. Cross may Have Tackled the Development of “An Apparent Viscosity Function for Shear Thickening Fluids
,”
J. Non-Newtonian Fluid Mech.
,
166
, pp.
23
24
. 1421–1424.
21.
Soleymanzadeh
,
A.
,
Gahrooei
,
H. R. E.
, and
Joekar-Niasar
,
V.
,
2018
, “
A New Empirical Model for Bulk Foam Rheology
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032911
.
22.
Sanghani
,
V.
, and
Ikoku
,
C. U.
,
1983
, “
Rheology of Foam and Its Implications in Drilling and Cleanout Operations
,”
ASME J. Energy Resour. Technol.
,
105
(
3
), pp.
362
371
.
23.
Saasen
,
A.
,
Ding
,
S.
,
Amundsen
,
P. A.
, and
Tellefsen
,
K.
,
2016
, “
The Shielding Effect of Drilling Fluids on Measurement While Drilling Tool Downhole Compasses—The Effect of Drilling Fluid Composition, Contaminants, and Rheology
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052907
.
24.
Ukwuoma
,
O.
, and
Ademodi
,
B.
,
1999
, “
The Effects of Temperature and Shear Rate on the Apparent Viscosity of Nigerian Oil Sand Bitumen
,”
Fuel Process. Technol.
,
60
(
2
), pp.
95
101
.
25.
Xie
,
J.
, and
Jin
,
Y.
,
2016
, “
Parameter Determination for the Cross Rheology Equation and its Application to Modeling Non-Newtonian Flows Using the WC-MPS Method
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
111
129
.
26.
de Waele
,
A.
,
1923
, “
Viscometry and Plastometry
,”
J. Oil Colour Chem. Assoc.
,
6
, pp.
33
69
.
27.
Ostwald
,
W.
,
1925
, “
Uber die Geschwindigkeitsfunktion der Viskosit¨at Disperser System
,”
I. Colloid Polym. Sci.
,
36
, pp.
99
117
.
28.
Nguyen
,
Q.
, and
Nguyen
,
N.
,
2011
, “
Incompressible Non-Newtonian Fluid Flows
,”
Intech Open
.
29.
Cross
,
M. M.
,
1965
, “
Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems
,”
J. Colloid Interface Sci.
,
20
(
5
), pp.
417
437
.
30.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
.
31.
Bird
,
R. B.
,
Armstong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
, Volume 1: Fluid Mechanics, 1st ed.,
John Wiley & Sons, Inc.
,
New York
.
32.
Papadopoulou
,
A.
,
Gillissen
,
J. J. J.
,
Tiwari
,
M. K.
, and
Balabani
,
S.
,
2020
, “
Effect of Particle Specific Surface Area on the Rheology of Non-Brownian Silica Suspensions
,”
Materials
,
13
(
20
), p.
4628
.
33.
Vinogradov
,
G. V.
, and
Malkin
,
A. Y.
,
1980
,
Rheology of Polymers
,
Mir Publishers
,
Moscow
.
34.
Diab
,
A.
,
You
,
Z.
,
Li
,
X.
,
Pais
,
J. C.
,
Yang
,
X.
, and
Chen
,
S.
,
2020
, “
Rheological Models for Non-Newtonian Viscosity of Modified Asphalt Binders and Mastics
,”
Egypt. J. Pet.
,
29
(
2
), pp.
105
112
.
35.
Ahammad
,
J. M.
,
Alam
,
J. M.
,
Rahman
,
M. A.
, and
Butt
,
S. D.
,
2017
, “
Numerical Simulation of Two-Phase Flow in Porous Media Using a Wavelet Based Phase-Field Method
,”
Chem. Eng. Sci.
,
173
, pp.
230
241
.
36.
Taborda
,
E. A.
,
Franco
,
C. A.
,
Lopera
,
S. H.
,
Alvarado
,
V.
, and
Cortés
,
F. B.
,
2016
, “
Effect of Nanoparticles/Nanofluids on the Rheology of Heavy Crude Oil and its Mobility on Porous Media at Reservoir Conditions
,”
Fuel
,
184
, pp.
222
232
.
37.
Shoji
,
E.
,
Yamagiwa
,
K.
,
Kubo
,
M.
,
Tsukada
,
T.
,
Takami
,
S.
,
Sugimoto
,
K.
,
Ito
,
D.
,
Saito
,
Y.
, and
Teratani
,
S.
, “
Flow Visualization of Heavy Oil in a Packed Bed Using Real-Time Neutron Radiography
,”
Chem. Eng. Sci.
,
196
, pp.
425
432
.
38.
Hauswirth
,
S. C.
,
Bowers
,
C. A.
,
Fowler
,
C. P.
,
Schultz
,
P. B.
,
Hauswirth
,
A. D.
,
Weigand
,
T.
, and
Miller
,
C. T.
,
2020
, “
Modeling Cross Model non-Newtonian Fluid Flow in Porous Media
,”
J. Contam. Hydrol.
,
235
, p.
103708
.
39.
Andrea
,
C.
, and
Ghezzehei
,
T. A.
,
2008
, “
On the Transport of Emulsions in Porous Media
,” https://escholarship.org/uc/item/8bq2p322
40.
Mandal
,
A.
, and
Bera
,
A.
,
2015
, “
Modeling of Flow of Oil-in-Water Emulsions Through Porous Media
,”
Pet. Sci.
,
12
(
2
), pp.
273
281
.
41.
Maaref
,
S.
,
Ayatollahi
,
S.
,
Rezaei
,
N.
, and
Masihi
,
M.
,
2017
, “
The Effect of Dispersed Phase Salinity on Water-in-Oil Emulsion Flow Performance: A Micromodel Study
,”
Ind. Eng. Chem. Res.
,
56
(
15
), pp.
4549
4561
.
42.
Chen
,
Z.
,
Dong
,
M.
,
Husein
,
M.
, and
Bryant
,
S.
,
2018
, “
Effects of Oil Viscosity on the Plugging Performance of Oil-in-Water Emulsion in Porous Media
,”
Ind. Eng. Chem. Res.
,
57
(
21
), pp.
7301
7309
.
43.
Yu
,
L.
,
Ding
,
B.
,
Dong
,
M.
, and
Jiang
,
Q.
,
2018
, “
Plugging Ability of Oil-in-Water Emulsions in Porous Media: Experimental and Modeling Study
,”
Ind. Eng. Chem. Res.
,
57
(
43
), pp.
14795
14808
.
44.
Li
,
S.
,
Li
,
Z.
,
Lu
,
T.
, and
Li
,
B.
,
2012
, “
Experimental Study on Foamy Oil Flow in Porous Media With Orinoco Belt Heavy Oil
,”
Energy Fuels
,
26
(
10
), pp.
6332
6342
.
45.
Chen
,
X.
,
Li
,
Y.
,
Gao
,
W.
, and
Chen
,
C.
,
2020
, “
Experimental Investigation on Transport Property and Emulsification Mechanism of Polymeric Surfactants in Porous Media
,”
J. Pet. Sci. Eng.
,
186
, p.
106687
.
46.
Skauge
,
A.
,
Zamani
,
N.
,
Gausdal
,
J. J.
,
Shaker
,
S. B.
,
Al-Shakry
,
B.
, and
Skauge
,
T.
,
2018
, “
Polymer Flow in Porous Media: Relevance to Enhanced Oil Recovery
,”
Colloids Interfaces
,
2
(
3
), p.
27
.
47.
de O Apolinário
,
F.
,
de Paula
,
A. S.
, and
Pires
,
A. P.
,
2020
, “
Injection of Water Slug Containing Two Polymers in Porous Media: Analytical Solution for Two-Phase Flow Accounting for Adsorption Effects
,”
J. Pet. Sci. Eng.
,
188
, p.
106927
.
48.
Nie
,
R.
,
Fan
,
X.
,
Li
,
M.
,
Chen
,
Z.
,
Zhou
,
Z.
,
Jiang
,
D.
,
Deng
,
Q.
, and
Pan
,
Y.
,
2021
, “
Physical Simulation of the Nonlinear Transient Flow Behavior in Closed High-Pressure Gas Reservoirs. Part I: Pressure-Depleted Flow Experiments on Matrix Cores
,”
J. Pet. Sci. Eng.
,
196
(
2021
), p.
108063
.
49.
Liu
,
R.
,
Pu
,
W.
,
Du
,
D.
,
Gu
,
J.
, and
Sun
,
L.
,
2018
, “
Manipulation of Star-Like Polymer Flooding Systems Based on Their Comprehensive Solution Properties and Flow Behavior in Porous Media
,”
J. Pet. Sci. Eng.
,
164
, pp.
467
484
.
50.
Al-Hajri
,
S.
,
Mahmood
,
S. M.
,
Akbari
,
S.
,
Abdulelah
,
H.
,
Yekeen
,
N.
, and
Saraih
,
N.
,
2020
, “
Experimental Investigation and Development of Correlation for Static and Dynamic Polymer Adsorption in Porous Media
,”
J. Pet. Sci. Eng.
,
189
, p.
106864
.
51.
Rezaeiakmal
,
F.
, and
Parsaei
,
R.
,
2021
, “
Visualization Study of Polymer-Enhanced Foam (PEF) Flooding for Recovery of Waterflood Residual Oil: Effect of Cross Flow
,”
J. Pet. Sci. Eng.
,
203
, p.
108583
.
52.
Gun
,
W. J.
, and
Routh
,
A. F.
,
2013
, “
Microcapsule Flow Behaviour in Porous Media
,”
Chem. Eng. Sci.
,
102
, pp.
309
314
.
53.
Chequer
,
L.
,
Bedrikovetsky
,
P.
,
2019
, “
Suspension-Colloidal Flow Accompanied by Detachment of Oversaturated and Undersaturated Fines in Porous Media
,”
Chem. Eng. Sci.
,
198
, pp.
16
32
.
54.
Wang
,
S.
,
Huang
,
Y.
, and
Civan
,
F.
,
2006
, “
Experimental and Theoretical Investigation of the Zaoyuan Field Heavy Oil Flow Through Porous Media
,”
J. Pet. Sci. Eng.
,
50
(
2
), pp.
83
101
.
55.
Ssebadduka
,
R.
,
Sasaki
,
K.
,
Nguele
,
R.
,
Dintwe
,
K. T.
,
Novaes
,
T.
, and
Sugai
,
Y.
,
2021
, “
New Method to Predict the Viscosity of Bitumen Diluted With Light Oil Using a Modified Van Der Wijk Model Under Reservoir Temperature and Pressure
,”
ACS Omega
,
6
(
15
), pp.
10085
10094
.
56.
Mitsoulis
,
E.
,
Tsamopoulos
,
J.
,
Mitsoulis
,
E.
, and
Tsamopoulos
,
J.
,
2017
, “
Numerical Simulations of Complex Yield-Stress Fluid Flows
,”
Rheol. Acta
,
56
(
3
), pp.
231
258
.
57.
Adebiyi
,
F. M.
,
Asubiojo
,
O. I.
, and
Ajayi
,
T. R.
,
2006
, “
Multielemental Analysis of Nigerian Bitumen by TXRF Spectrometry and the Physical Constants Characterization of its Hydrocarbon Component
,”
Fuel
,
85
(
3
), pp.
396
400
.
58.
Adebiyi
,
F. M.
, and
Omode
,
A. A.
,
2007
, “
Organic, Chemical and Elemental Characterization of Components of Nigerian Bituminous Sands Bitumen
,”
Energy Sources Part A: Recovery Util. Environ. Eff.
,
29
(
8
), pp.
669
676
.
59.
Sirivithayapakorn
,
S.
, and
Keller
,
A.
,
2003
, “
Transport of Colloids in Saturated Porous Media: A Pore-Scale Observation of the Size Exclusion Effect and Colloid Acceleration
,”
Water Resour. Res.
,
20
(
4
), p.
1109
.
61.
Behzadfar
,
E.
, and
Hatzikiriakos
,
S. G.
,
2014
, “
Rheology of Bitumen: Effects of Temperature, Pressure, CO2 Concentration and Shear Rate
,”
Fuel
,
116
, pp.
578
587
.
62.
Alade
,
O. S.
,
Mahmoud
,
M.
,
Al Shehri
,
D. A.
,
Gang
,
L.
, and
Abdulsamed
,
I.
,
2020
, “
Investigation Into the Effect of Water Fraction on the Single-Phase Flow of Water-in-Oil Emulsion in a Porous Medium Using CFD
,”
Arabian J. Sci. Eng.
,
45
, pp.
7793
7805
.
You do not currently have access to this content.