Abstract

Predicting the rate of penetration (ROP) is challenging especially during horizontal drilling. This is because there are many factors affecting ROP. Machine learning techniques are very promising in identifying the structural relationships existing between the inputs and target variables; these techniques were recently successfully applied to estimate the ROP in different wellbore shapes and through various formation lithologies. This study is aimed to introduce a random forest (RF) regression model for ROP prediction based on many factors such as the drilling mechanical parameters (torque, pipe speed, and weight on bit), hole cleaning parameters (the drilling fluid flowrate and pump pressure), and formation properties (formation bulk density and formation resistivity). In addition to its superiority in providing accurate results, RF has the advantage of providing interpretable rules. These rules help in understanding the relationships between the regressors and the target variable. Actual field measurements collected during horizontally drilling carbonate formation were used for training and testing the RF model. Unseen data collected from another well were used for validating the optimized model. Using the K-fold validation method, the proposed RF model has proven its superior performance when compared to artificial neural networks and support vector regression models. An illustrative example on a sample of real drilling data is presented to explain how the RF regression model is applied to the drilling data. In addition, developing interpretable regression rules through merging RF results is explained. These rules can guide drilling practitioners in accomplishing drilling projects at minimum time and cost.

References

1.
Bourgoyne
,
A. T.
, Jr.
,
Millheim
,
K. K.
,
Chenevert
,
M. E.
, and
Young
,
F. S.
,
1991
,
Applied Drilling Engineering
, Vol.
2
,
Society of Petroleum Engineers
,
Houston, TX
.
2.
Akgun
,
F.
,
2002
, “
How to Estimate the Maximum Achievable Drilling Rate Without Jeopardizing Safety
,”
The Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, United Arab Emirates
,
Oct. 13–16
.
3.
Mahmoud
,
A. A.
,
Elzenary
,
M.
, and
Elkatatny
,
S.
,
2020
, “
New Hybrid Hole Cleaning Model for Vertical and Deviated Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
034501
.
4.
Hossain
,
M. E.
, and
Al-Majed
,
A. A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
,
Scrivener Publishing LLC
,
Beverly, CA
.
5.
Osgouei
,
R. E.
,
2007
,
Rate of Penetration Estimation Model for Directional and Horizontal Wells
,
The Graduate School, Middle East Technical University
,
Ankara
.
6.
Maurer
,
W.
,
1962
, “
The “Perfect-Cleaning” Theory of Rotary Drilling
,”
J. Pet. Technol.
,
14
(
11
), pp.
1270
1274
.
7.
Bingham
,
M. G.
,
1965
,
A New Approach to Interpreting Rock Drillability
,
Petroleum Publishing Co.
,
Tulsa, OK
.
8.
Bourgoyne
,
A.
, and
Young
,
F. S.
,
1974
, “
A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection
,”
Soc. Pet. Eng. J.
,
14
(
4
), pp.
371
384
.
9.
Al-AbdulJabbar
,
A. M.
,
2017
,
Utilizing Field Data to Understand the Effect of Drilling Parameters and Mud Rheology on Rate of Penetration in Carbonate Formations
,
King Fahd University of Petroleum & Minerals
,
Dhahran
.
10.
Ahmed
,
S. A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2019
, “
Fracture Pressure Prediction Using Radial Basis Function
,”
Proceedings of the AADE National Technical Conference and Exhibition
,
Denver, CO
,
Apr. 9–10
, AADE-19-NTCE-061.
11.
Elkatatny
,
S.
,
Al-AbdulJabbar
,
A.
, and
Mahmoud
,
A. A.
,
2019
, “
New Robust Model to Estimate the Formation Tops in Real-Time Using Artificial Neural Networks (ANN)
,”
Petrophysics
,
60
(
6
), pp.
825
837
.
12.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
New Robust Model to Evaluate the Total Organic Carbon Using Fuzzy Logic
,”
The SPE Kuwait Oil & Gas Show and Conference
,
Mishref, Kuwait
,
Oct. 13–16
.
13.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Alsabaa
,
A.
, and
Al Shehri
,
D.
,
2020
, “
Functional Neural Networks-Based Model for Prediction of the Static Young’s Modulus for Sandstone Formations
,”
The 54th US Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
.
14.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abouelresh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2017
, “
Determination of the Total Organic Carbon (TOC) Based on Conventional Well Logs Using Artificial Neural Network
,”
Int. J. Coal Geol.
,
179
, pp.
72
80
.
15.
Bilgesu
,
H.
,
Tetrick
,
L.
,
Altmis
,
U.
,
Mohaghegh
,
S.
, and
Ameri
,
S.
,
1997
, “
A New Approach for the Prediction of Rate of Penetration (ROP) Values
,”
Proceedings of the SPE Eastern Regional Meeting
,
Lexington, KY
,
Oct. 22–24
, SPE-39231-MS.
16.
Elkatatny
,
S.
,
2017
, “
New Approach to Optimize the Rate of Penetration Using Artificial Neural Network
,”
Arabian J. Sci. Eng.
,
43
(
11
), pp.
6297
6304
.
17.
Al-AbdulJabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Predicting Rate of Penetration Using Artificial Intelligence Techniques
,”
The SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
.
18.
Ahmed
,
A. S.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Mohamed
,
I. M.
,
2018
, “
Prediction of Rate of Penetration of Deep and Tight Formation Using Support Vector Machine
,”
The SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
.
19.
Al-Abduljabbar
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
,
Moussa
,
T.
,
Al-shehri
,
D.
,
Abughaban
,
M.
, and
Al-yami
,
A.
,
2020
, “
Prediction of the Rate of Penetration While Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive Artificial Neural Networks Technique
,”
Sustainability
,
12
(
4
), p.
1376
.
20.
Aler
,
R.
,
Valls
,
J. M.
, and
Boström
,
H.
,
2020
, “
Study of Hellinger Distance as a Splitting Metric for Random Forests in Balanced and Imbalanced Classification Datasets
,”
Expert Syst. Appl.
,
149
.
21.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
22.
Lee
,
I.
,
Park
,
S. H.
, and
Baek
,
J. G.
,
2020
, “
Random-Forest-Based Real-Time Contrasts Control Chart Using Adaptive Breakpoints With Symbolic Aggregate Approximation
,”
Expert Syst. Appl.
,
158
, p.
113407
.
23.
Nadi
,
A.
, and
Moradi
,
H.
,
2019
, “
Increasing the Views and Reducing the Depth in Random Forest
,”
Expert Syst. Appl.
,
138
, p.
112801
.
24.
Speiser
,
J. L.
,
Miller
,
M. E.
,
Tooze
,
J.
, and
Ip
,
E.
,
2019
, “
A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling
,”
Expert Syst. Appl.
,
134
, pp.
93
101
.
25.
Alsaihati
,
A.
,
Elkatatny
,
S.
,
Mahmoud
,
A. A.
, and
Abdulraheem
,
A.
,
2021
, “
Use of Machine Learning and Data Analytics to Detect Downhole Abnormalities While Drilling Horizontal Wells, With Real Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
.
26.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R.
, and
Stone
,
C.
,
1984
,
Classification and Regression Trees
,
Chapman and Hall
,
Wadsworth, New York
.
27.
Aggarwal
,
C. C.
,
2015
,
Data Mining
,
Springer International Publishing
,
Switzerland
.
28.
Vapnik
,
V.
,
1998
,
Statistical Learning Theory
,
Wiley
,
New York, United States
.
29.
El-Sebakhy
,
E. A.
,
2009
, “
Forecasting PVT Properties of Crude Oil Systems Based on Support Vector Machines Modeling Scheme
,”
J. Pet. Sci. Eng.
,
64
(
1–4
), pp.
25
34
.
30.
Ali
,
S. S.
,
Nizamuddin
,
S.
,
Abdulraheem
,
A.
,
Hassan
,
M. R.
, and
Hossain
,
M. E.
,
2013
, “
Hydraulic Unit Prediction Using Support Vector Machine
,”
J. Pet. Sci. Eng.
,
110
, pp.
243
252
.
31.
Khazali
,
N.
, and
Sharifi
,
M.
,
2019
, “
New Approach for Interpreting Pressure and Flow Rate Data From Permanent Downhole Gauges, Least Square Support Vector Machine Approach
,”
J. Pet. Sci. Eng.
,
180
, pp.
62
77
.
32.
Ahmed
,
S. A.
,
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Prediction of Pore and Fracture Pressures Using Support Vector Machine
,”
The 2019 International Petroleum Technology Conference
,
Beijing, China
,
Mar. 26–28
.
33.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abouelresh
,
M.
,
Abdulraheem
,
A.
, and
Ali
,
A.
,
2020
, “
Estimation of the Total Organic Carbon Using Functional Neural Networks and Support Vector Machine
,”
Proceedings of the 12th International Petroleum Technology Conference and Exhibition
,
Dhahran, Saudi Arabia
,
Jan. 13–15
, IPTC-19659-MS.
34.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
,
Abouelresh
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Evaluation of the Total Organic Carbon (TOC) Using Different Artificial Intelligence Techniques
,”
Sustainability
,
11
(
20
), p.
5643
.
35.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Chen
,
W.
, and
Abdulraheem
,
A.
,
2019
, “
Estimation of Oil Recovery Factor for Water Drive Sandy Reservoirs Through Applications of Artificial Intelligence
,”
Energies
,
12
(
19
), p.
3671
.
36.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2017
, “
Application of Artificial Intelligence Techniques in Estimating Oil Recovery Factor for Water Drive Sandy Reservoirs
,”
The 2017 SPE Kuwait Oil & Gas Show and Conference
,
Kuwait City, Kuwait
,
Oct. 15–18
.
37.
Gurney
,
K.
,
1997
,
An Introduction to Neural Networks
,
UCL Press Limited
,
London
.
38.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
, and
Al-Abduljabbar
,
A.
,
2021
, “
Application of Machine Learning Models for Real-Time Prediction of the Formation Lithology and Tops From the Drilling Parameters
,”
J. Pet. Sci. Eng.
,
203
, p.
108574
.
39.
Ren
,
X.
,
Hou
,
J.
,
Song
,
S.
,
Liu
,
Y.
,
Chen
,
D.
,
Wang
,
X.
, and
Dou
,
L.
,
2019
, “
Lithology Identification Using Well Logs: A Method by Integrating Artificial Neural Networks and Sedimentary Patterns
,”
J. Pet. Sci. Eng.
,
182
, p.
106336
.
40.
Sabah
,
S.
,
Talebkeikhah
,
M.
,
Agin
,
F.
,
Talebkeikhah
,
F.
, and
Hasheminasab
,
E.
,
2019
, “
Application of Decision Tree, Artificial Neural Networks, and Adaptive Neuro-Fuzzy Inference System on Predicting Lost Circulation: A Case Study From Marun Oil Field
,”
J. Pet. Sci. Eng.
,
177
, pp.
236
249
.
41.
Al-Abduljabbar
,
A.
,
Mahmoud
,
A. A.
, and
Elkatatny
,
S.
,
2021
, “
Artificial Neural Network Model for Real-Time Prediction of the Rate of Penetration While Horizontally Drilling Natural Gas-Bearing Sandstone Formations
,”
Arabian J. Geosci.
,
14
(
2
), p.
117
.
42.
Ashrafi
,
S. B.
,
Anemangely
,
M.
,
Sabah
,
M.
, and
Ameri
,
M. J.
,
2019
, “
Application of Hybrid Artificial Neural Networks for Predicting Rate of Penetration (ROP): A Case Study From Marun Oil Field
,”
J. Pet. Sci. Eng.
,
175
, pp.
604
623
.
43.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abduljabbar
,
A.
,
Moussa
,
T.
,
Gamal
,
H.
, and
Al Shehri
,
D.
,
2020
, “
Artificial Neural Networks Model for Prediction of the Rate of Penetration While Horizontally Drilling Carbonate Formations
,”
The 54th US Rock Mechanics/Geomechanics Symposium
,
Golden, CO
,
June 28–July 1
.
44.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
, and
Moussa
,
T.
,
2019
, “
Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks
,”
Energies
,
12
(
11
), p.
2125
.
45.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
, and
Al-Shehri
,
D.
,
2020
, “
Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations
,”
Sustainability
,
12
(
5
), p.
1880
.
46.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ibrahim
,
O.
, and
Ali
,
A.
,
2017
, “
New Technique to Determine the Total Organic Carbon Based on Well Logs Using Artificial Neural Network (White Box)
,”
The 2017 SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 24–27
.
47.
Andrzejak
,
A.
,
Langner
,
F.
, and
Zabala
,
S.
,
2013
, “
Interpretable Models From Distributed Data Via Merging of Decision Trees
,”
IEEE Symposium on Computational Intelligence and Data Mining (CIDM).
,
Singapore
,
Apr. 16–19
.
You do not currently have access to this content.