Abstract

Water may be produced from atmospheric humidity anywhere on Earth; however, current approaches are energy-intensive and costly, thus limiting the deployment of atmospheric water harvesting (AWH) technologies. A system-level thermodynamic model of several AWH pathways is presented to elucidate the important energy flows in these processes as a means of reducing the energy required to produce a unit of water. Model results show that freshwater may be produced from humid air via processes driven solely with solar electricity in an arid climate with an energy input between 116 kWhe/m3 and 1021 kWhe/m3, depending on atmospheric conditions and processing configuration. We describe a novel, desiccant-based AWH approach in which the latent heat of vaporization is internally recovered resulting in a significant reduction in energy requirements relative to the state of the art. Finally, a parametric model of a desiccant-based AWH system is used to estimate the minimum levelized cost of water (LCOW) via solar-driven AWH at 6.5 $/m3 when both latent and sensible energy are recovered internally.

References

1.
Kummu
,
M.
,
Guillaume
,
J. H. A.
, and
Moel
,
H. d.
,
2016
, “
The World’s Road to Water Scarcity: Shortage and Stress in the 20th Century and Pathways Towards Sustainability
,”
Sci. Rep.
,
6
(
1
), p.
38495
.
2.
Gleick
,
P. H.
,
1996
, “
Basic Water Requirements for Human Activities: Meeting Basic Needs
,”
Water Int.
,
21
(
2
), pp.
83
92
.
3.
Falkenmark
,
M.
,
1989
, “
The Massive Water Scarcity Now Threatening Africa: Why Isn't it Being Addressed?
Ambio
,
18
(
2
), pp.
112
118
.
4.
Brown
,
A.
, and
Matlock
,
M. D.
,
2011
, “
A Review of Water Scarcity Indices and Methodologies
,”
White Paper
,
106
(
1
), pp.
19
.
5.
Rijsberman
,
F. R.
,
2006
, “
Water Scarcity: Fact Or Fiction?
,”
Agricultural Water Management
,
80
(
1
), pp.
5
22
.
6.
Rijsberman
,
F. R.
,
2000
,
World Water Scenarios: Analysing the Global Water Resource and Use
,
Earthscan
,
London
.
7.
Park
,
K.
,
Chhatre
,
S. S.
, and
Srinivasan
,
S.
,
2013
, “
Optimal Design of Permeable Fiber Network Structures for Fog Harvesting
,”
Langmuir
,
29
(
43
), pp.
13269
13277
.
8.
Gandhidasan
,
P.
, and
Abualhamayel
,
H. I.
,
2005
, “
Modeling and Testing of a Dew Collection System
,”
Desalination
,
180
(
1–3
), pp.
47
51
.
9.
Ming
,
T.
,
Gong
,
T.
, and
de Richter
,
R. K.
,
2017
, “
A Moist Air Condensing Device for Sustainable Energy Production and Water Generation
,”
Energy Convers. Manage.
,
138
(
1
), pp.
638
650
.
10.
Wahlgren
,
R. V.
,
2001
, “
Atmospheric Water Vapour Processor Designs for Potable Water Production: A Review
,”
Water Res.
,
35
(
1
), pp.
1
22
.
11.
El-Ghonemy
,
A. M. K.
,
2012
, “
Fresh Water Production From/by Atmospheric Air for Arid Regions, Using Solar Energy: Review (Retracted Article. See Vol. 22, Pg. 735, 2013)
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
6384
6422
.
12.
Tu
,
Y.
,
Wang
,
R.
, and
Zhang
,
Y.
,
2018
, “
Progress and Expectation of Atmospheric Water Harvesting
,”
Joule
,
2
(
8
), pp.
1452
1475
.
13.
Tu
,
R.
, and
Hwang
,
Y.
,
2020
, “
Reviews of Atmospheric Water Harvesting Technologies
,”
Energy
,
1
, p.
117630
.
14.
Ecoblue, Water is Life, Ecoblue LLC, 2020, https://ecobluecorp.com/, Accessed 6 June 2018.
15.
Sun to Water Technologies, Piece of Mind is a Precious Resource, Sun to Water Technologies LLC, 2020, https://suntowater.com/, Accessed 6 June 2018
.
16.
Gido
,
B.
,
Friedler
,
E.
, and
Broday
,
D. M.
,
2016
, “
Assessment of Atmospheric Moisture Harvesting by Direct Cooling
,”
Atmospheric Res.
,
182
(
1
), pp.
156
162
.
17.
Tu
,
R.
, and
Hwang
,
Y.
,
2019
, “
Performance Analyses of a New System for Water Harvesting From Moist Air That Combines Multi-stage Desiccant Wheels and Vapor Compression Cycles
,”
Energy Convers. Manage.
,
198
(
1
), p.
111811
.
18.
Solís-Chaves
,
J. S.
,
Rocha-Osorio
,
C. M.
, and
Murari
,
A.
,
2018
, “
Extracting Potable Water From Humid Air Plus Electric Wind Generation: A Possible Application for a Brazilian Prototype
,”
Renewable Energy
,
121
(
1
), pp.
102
115
.
19.
Aqua Sciences
. “System and Method for Producing Water,” US11574164.
20.
Source, Perfect Drinking Water Created from Sunlight and Air, Source Global PBC, 2020, https://www.source.co/, Accessed 12 December 2020
.
21.
Ejeian
,
M.
,
Entezari
,
A.
, and
Wang
,
R. Z.
,
2020
, “
Solar Powered Atmospheric Water Harvesting with Enhanced LiCl/MgSO4/ACF Composite.
Appl. Therm. Eng.
,
176
(
1
), p.
115396
.
22.
Entezari
,
A.
,
Ejeian
,
M.
, and
Wang
,
R. Z.
,
2019
, “
Extraordinary Air Water Harvesting Performance With Three Phase Sorption
,”
Materials Today Energy
,
13
(
1
), pp.
362
373
.
23.
Rieth
,
A. J.
, and
Dincă
,
M.
,
2017
, “
Moisture Farming With Metal-Organic Frameworks
,”
Chem
,
2
(
6
), pp.
757
759
.
24.
Kim
,
H.
,
Yang
,
S.
, and
Rao
,
S. R.
,
2017
, “
Water Harvesting From Air With Metal-Organic Frameworks Powered by Natural Sunlight
,”
Science
,
356
(
6336
), pp.
430
434
.
25.
Kim
,
H.
,
Rao
,
S. R.
, and
Kapustin
,
E. A.
,
2018
, “
Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates
,”
Nat. Commun.
,
9
(
1
), p.
1191
.
26.
Zhou
,
X.
,
Lu
,
H.
, and
Zhao
,
F.
,
2020
, “
Atmospheric Water Harvesting: A Review of Material and Structural Designs
,”
ACS Materials Lett.
,
2
(
7
), pp.
671
684
.
27.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
28.
Fathieh
,
F.
,
Kalmutzki
,
M. J.
, and
Kapustin
,
E. A.
,
2018
, “
Practical Water Production from Desert Air
,”
Science Advances
,
4
(
6
), pp.
1
10
.
29.
Oshima
,
K.
,
Yamazaki
,
M.
, and
Takewaki
,
T.
,
2006
, “
Application of Novel FAM Adsorbents in a Desiccant System
,”
Kagaku Kogaku Ronbunshu
,
32
(
6
), pp.
518
523
.
30.
Kumar
,
M.
, and
Yadav
,
A.
,
2016
, “
Comparative Study of Solar-Powered Water Production From Atmospheric Air Using Different Desiccant Materials
,”
Int. J. Sustainable Eng.
,
9
(
6
), pp.
390
400
.
31.
Sultan
,
M.
,
El-Sharkawy
,
I. I.
, and
Miyazaki
,
T.
,
2015
, “
An Overview of Solid Desiccant Dehumidification and Air Conditioning Systems
,”
Renewable Sustainable Energy Rev.
,
46
(
1
), pp.
16
29
.
32.
Zhao
,
F.
,
Zhou
,
X.
, and
Liu
,
Y.
,
2019
, “
Super Moisture-Absorbent Gels for All-Weather Atmospheric Water Harvesting
,”
Adv. Mater.
,
31
(
10
), p.
1806446
.
33.
Wang
,
J. Y.
,
Liu
,
J. Y.
, and
Wang
,
R. Z.
,
2017
, “
Experimental Investigation on Two Solar-Driven Sorption Based Devices to Extract Fresh Water From Atmosphere
,”
Appl. Therm. Eng.
,
127
(
1
), pp.
1608
1616
.
34.
William
,
G. E.
,
Mohamed
,
M. H.
, and
Fatouh
,
M.
,
2015
, “
Desiccant System for Water Production From Humid Air Using Solar Energy
,”
Energy
,
90
(
1
), pp.
1707
1720
.
35.
Ettouney
,
H.
,
El-Dessouky
,
H.
, and
Al-Roumi
,
Y.
,
1999
, “
Analysis of Mechanical Vapour Compression Desalination Process
,”
Int. J. Energy Res.
,
23
(
5
), pp.
431
451
.
36.
Ettouney
,
H.
,
2006
, “
Design of Single-Effect Mechanical Vapor Compression
,”
Desalination
,
190
(
1–3
), pp.
1
15
.
37.
Miller
,
J. E.
,
2003
,
Review of Water Resources and Desalination Technologies
,
Sandia National Laboratories, Albuquerque
, NM.
38.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M. A.
, and
AlSadah
,
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042008
.
39.
Helal
,
A. M.
, and
Al-Malek
,
S. A.
,
2006
, “
Design of a Solar-Assisted Mechanical Vapor Compression (MVC) Desalination Unit for Remote Areas in the UAE
,”
Desalination
,
197
(
1–3
), pp.
273
300
.
40.
Van Orshoven
,
D.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1993
, “
An Investigation of Water as a Refrigerant
,”
ASME J. Energy Resour. Technol.
,
115
(
4
), pp.
257
263
.
41.
Prasad
,
B. G. S.
,
2002
, “
Effect of Liquid on a Reciprocating Compressor
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
187
190
.
42.
Campbell
,
J. M.
,
2014
,
Campbell Petroleum Series
,
Norman
,
OK
.
43.
Campbell
,
J. M.
,
2015
,
Petro Skills, How to Estimate Compressor Efficiency, John M. Campbell & Co., http://www.jmcampbell.com/tip-of-the-month/2015/07/how-to-estimate-compressor-efficiency/, Accessed 12 December 2020
.
44.
Gandhidasan
,
P.
, and
Abualhamayel
,
H. I.
,
1996
, “
Water Recovery From the Atmosphere
,”
Renewable Energy
,
9
(
1–4
), pp.
745
748
.
45.
Gandhidasan
,
P.
, and
Abualhamayel
,
H. I.
,
2010
, “
Investigation of Humidity Harvest as an Alternative Water Source in the Kingdom of Saudi Arabia
,”
Water Environment J.
,
24
(
4
), pp.
282
292
.
46.
Abualhamayel
,
H. I.
, and
Gandhidasan
,
P.
,
1997
, “
A Method of Obtaining Fresh Water From the Humid Atmosphere
,”
Desalination
,
113
(
1
), pp.
51
63
.
47.
Hamed
,
A. M.
,
2000
, “
Absorption-Regeneration Cycle for Production of Water From Air-Theoretical Approach
,”
Renewable Energy
,
19
(
4
), pp.
625
635
.
48.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics an Engineering Approach
,
McGraw-Hill Education
,
New York
,
137
140
.
49.
US Department of Energy
. “Funding Opportunity Announcement: Solar Desalination,” 2018(6/15/2018).
50.
National Renewable Energy Laboratory
. “National Solar Radiation Data Base,” 2018(6/15/2018).
51.
Lazard
,
2019
, “Lazard's Levelized Cost of Energy Analysis—Version 13.0,” 2020(10/08/2020).
52.
Dunlap
,
M. A.
,
Marion
,
W.
, and
Wilcox
,
S.
,
2001
,
Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors
,
National Renewable Energy Lab
,
Golden, CO
.
You do not currently have access to this content.