Abstract

Hydrocarbon gas flooding/Huff-n-Puff (HNP) can improve the oil recovery in the unconventional reservoirs. Here, the mechanisms accounting for fluid flow in the low-permeability and ultra-low permeability reservoirs were experimentally and theoretically investigated. Core plugs collected from a typical China oilfield were utilized for the experiments. Additionally, methane was used as the injection agent to conduct natural gas HNP/displacement experiments. The results indicated that the use of natural gas as an energy supplement agent and the HNP development method can effectively improve the recovery efficiency of the aforementioned two types of reservoirs. During the HNP process, the oil recovery is effectively enhanced mainly in the first round and second round. Meanwhile, during gas injection and HNP, natural gas can evidently weaken the extraction and reduce the precipitation of heavy components. However, the natural gas injection can establish an effective driving pressure system in low-permeability core plugs, and the interaction between natural gas and oil can change the mobility ratio. Furthermore, it aids in avoiding viscous fingering and premature breakthroughs. Moreover, the oil can be sandwiched between the interface of the gas and water phases to form a slip channel in a hydrophilic core sample, which can quickly produce oil. Finally, a numerical model was developed by considering the reservoir parameters of Changqing Oilfield, China. The oil recovery after eight rounds of CH4 HNP was 80% higher than that achieved via depletion development. Additionally, the oil recovery curves are especially similar in the previous three HNP rounds. These curves show obvious differences from the fourth round onwards, which indicates that the asphaltene deposition and CH4 diffusion slightly affect the oil recovery factor during the initial production period.

References

1.
Jia
,
C. Z.
,
Zou
,
C. N.
,
Yang
,
Z.
,
Zhu
,
R. K.
,
Chen
,
Z. X.
,
Zhang
,
B.
, and
Jiang
,
L.
,
2018
, “
Significant Progress of Continental Petroleum Geological Theory in Basins of Central and Western China
,”
Pet. Explor. Dev.
,
45
(
4
), pp.
573
588
. 10.1016/S1876-3804(18)30064-8
2.
Sheng
,
J. J.
,
2017
, “
Critical Review of Field EOR Projects in Shale and Tight Reservoirs
,”
J. Pet. Sci. Eng.
,
159
, pp.
654
665
. 10.1016/j.petrol.2017.09.022
3.
Zou
,
C. N.
,
Yang
,
Z.
,
He
,
D. B.
,
Wei
,
Y. S.
,
Li
,
J.
,
Jia
,
A. L.
,
Chen
,
J. J.
,
Zhao
,
Q.
,
Li
,
Y. L.
,
Li
,
J.
, and
Yang
,
S.
,
2018
, “
Theory, Technology and Prospects of Conventional and Unconventional Natural gas
,”
Pet. Explor. Dev.
,
45
(
4
), pp.
604
618
. 10.1016/S1876-3804(18)30066-1
4.
EIA
,
2018
, “
Horizontally Drilled Wells Dominate U.S. Tight Formation Production
,” https://www.eia.gov/todayinenergy/detail.php?id=39752
5.
Zhao
,
X. L.
,
Yang
,
Z. M.
,
Lin
,
W.
,
Xiong
,
S. C.
,
Luo
,
Y. T.
,
Wang
,
Z. Y.
,
Xia
,
D. B.
, and
Wu
,
Z. K.
,
2019
, “
Study on Pore Structures of Tight Sandstone Reservoirs Based on Nitrogen Adsorption, High-Pressure Mercury Intrusion and Rate-Controlled Mercury Intrusion
,”
ASME J. Energy Resour. Technol
,
141
(
11
), p.
112903
. 10.1115/1.4043695
6.
Song
,
Z. J.
,
Song
,
Y. L.
,
Li
,
Y. Z.
,
Bai
,
B. J.
,
Song
,
K. P.
, and
Hou
,
J. R.
,
2020
, “
A Critical Review of CO2 Enhanced oil Recovery in Tight oil Reservoirs of North America and China
,”
Fuel
,
276
, p.
118006
. 10.1016/j.fuel.2020.118006
7.
Bennion
,
D. B.
, and
Thomas
,
F. B.
,
2005
, “
Formation Damage Issues Impacting the Productivity of Low Permeability, Low Initial Water Saturation Gas Producing Formations
,”
ASME J. Energy Resour. Technol
,
127
(
3
), pp.
240
247
. 10.1115/1.1937420
8.
Liu
,
P. C.
,
Zheng
,
H. M.
, and
Wu
,
G. H.
,
2017
, “
Experimental Study and Application of Steam Flooding for Horizontal Well in Ultraheavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol
,
139
(
1
), p.
012908
. 10.1115/1.4035254
9.
Burrows
,
L. C.
,
Haeri
,
F.
,
Sanguinito
,
S.
,
Shi
,
P.
,
Goodman
,
A.
, and
Enick
,
R. M.
,
2020
, “
A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs
,”
Energy Fuels
,
34
(
5
), pp.
5331
5380
. 10.1021/acs.energyfuels.9b03658
10.
Li
,
S. Y.
,
Li
,
B. F.
,
Zhang
,
Q. L.
,
Li
,
Z. M.
, and
Yang
,
D. Y.
,
2018
, “
Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072907
. 10.1115/1.4039325
11.
Mokheimer
,
E. M. A.
,
Hamdy
,
M.
,
Abubakar
,
Z.
,
Shakeel
,
M. R.
,
Habib
,
M. A.
, and
Mahmoud
,
M.
,
2019
, “
A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
030801
. 10.1115/1.4041096
12.
Hawthorne
,
S. B.
,
Gorecki
,
C. D.
,
Sorensen
,
J. A.
,
Miller
,
D. J.
,
Harju
,
J. A.
, and
Melzer
,
L. S.
,
2014
, “
Hydrocarbon Mobilization Mechanisms Using CO2 in an Unconventional Oil Play
,”
Energy Procedia
,
63
, pp.
7717
7723
. 10.1016/j.egypro.2014.11.805
13.
Zhang
,
N.
,
Wei
,
M.
, and
Bai
,
B.
,
2018
, “
Statistical and Analytical Review of Worldwide CO2 Immiscible Field Applications
,”
Fuel
,
220
, pp.
89
100
. 10.1016/j.fuel.2018.01.140
14.
Alfarge
,
D.
,
Wei
,
M. Z.
, and
Bai
,
B. J.
,
2017
, “
Factors Affecting CO2-EOR in Shale-Oil Reservoirs: Numerical Simulation Study and Pilot Tests
,”
Energy Fuels
,
31
(
8
), pp.
8462
8480
. 10.1021/acs.energyfuels.7b01623
15.
Abusahmin
,
B. S.
,
Karri
,
R. R.
, and
Maini
,
B. B.
,
2017
, “
Influence of Fluid and Operating Parameters on the Recovery Factors and Gas Oil Ratio in High Viscous Reservoirs Under Foamy Solution gas Drive
,”
Fuel
,
197
, pp.
497
517
. 10.1016/j.fuel.2017.02.037
16.
Zhao
,
H. L.
,
Chang
,
Y. W.
, and
Guo
,
X. F.
,
2016
, “
Foamy oil Properties and Reservoir Performance
,”
Pet. Sci. Technol.
,
34
(
16
), pp.
1512
1519
. 10.1080/10916466.2016.1206570
17.
Zheng
,
T. Y.
,
Liu
,
X. G.
,
Yang
,
Z. M.
,
Luo
,
Y. T.
,
Zhang
,
Y. P.
,
He
,
Y.
, and
Xiong
,
S. C.
,
2019
, “
Research Progress on Application of Natural gas to Enhance oil Recovery in Tight Reservoirs
,”
Appl. Chem. Ind.
,
49
(
1
), pp.
190
195
.
18.
Zhang
,
Y.
,
Di
,
Y.
,
Shi
,
Y.
, and
Hu
,
J. H.
,
2018
, “
Cyclic CH4 Injection for Enhanced Oil Recovery in the Eagle Ford Shale Reservoirs
,”
Energies
,
11
(
11
), p.
3094
. 10.3390/en11113094
19.
Zendehboudi
,
S.
,
Ahmadi
,
M. A.
,
Bahadori
,
A.
,
Shafiei
,
A.
, and
Babadagli
,
T.
,
2013
, “
A Developed Smart Technique to Predict Minimum Miscible Pressure-EOR Implications
,”
Can. J. Chem. Eng.
,
91
(
7
), pp.
1325
1337
. 10.1002/cjce.21802
20.
Hawthorne
,
S. B.
,
Miller
,
D. J.
,
Jin
,
L.
, and
Gorecki
,
C. D.
,
2016
, “
Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO2, Methane, and Ethane
,”
Energy Fuels
,
30
(
8
), pp.
6365
6372
. 10.1021/acs.energyfuels.6b01151
21.
Cheng
,
C.
, and
Ming
,
G.
,
2017
, “
Investigation of Cyclic CO2 Huff-and-Puff Recovery in Shale oil Reservoirs Using Reservoir Simulation and Sensitivity Analysis
,”
Fuel
,
188
, pp.
102
111
. 10.1016/j.fuel.2016.10.006
22.
Alfarge
,
D.
,
Wei
,
M. Z.
, and
Bai
,
B. J.
,
2018
, “
A Parametric Study on the Applicability of Miscible Gases Based EOR Techniques in Unconventional Liquids Rich Reservoirs
,”
Soc. Pet. Eng.
10.2118/189785-MS
23.
Zhang
,
Y. P.
,
Hyndman
,
C. L.
, and
Maini
,
B. B.
,
2000
, “
Measurement of Gas Diffusivity in Heavy Oils
,”
J. Pet. Sci. Eng.
,
25
(
1
), pp.
37
47
. 10.1016/S0920-4105(99)00031-5
24.
Wang
,
L. Z.
, and
Yu
,
W.
,
2019
, “
Mechanistic Simulation Study of Gas Puff and Huff Process for Bakken Tight Oil Fractured Reservoir
,”
Fuel
,
239
, pp.
1179
1193
. 10.1016/j.fuel.2018.11.119
25.
Wei
,
B. L.
,
Lu
,
L. M.
,
Pu
,
W. F.
,
Wu
,
R. N.
,
Zhang
,
X.
,
Li
,
Y. B.
, and
Jin
,
F. Y.
,
2017
, “
Production Dynamics of CO2 Cyclic Injection and CO2 Sequestration in Tight Porous Media of Lucaogou Formation in Jimsar Sag
,”
J. Pet. Sci. Eng.
,
157
, pp.
1084
1094
. 10.1016/j.petrol.2017.08.023
26.
Zanganeh
,
P.
,
Dashti
,
H.
, and
Ayatollahi
,
S.
,
2018
, “
Comparing the Effects of CH4, CO2, and N2 Injection on Asphaltene Precipitation and Deposition at Reservoir Condition: A Visual and Modeling Study
,”
Fuel
,
217
, pp.
633
641
. 10.1016/j.fuel.2018.01.005
27.
EIA
,
2019
, “
China Adds Incentives for Domestic Natural Gas Production as Imports Increase
,” https://www.eia.gov/todayinenergy/detail.php?id=41773
28.
Hoffman
,
B. T.
,
2018
, “
Huff-N-Puff Gas Injection Pilot Projects in the Eagle Ford
,”
Soc. Pet. Eng.
10.2118/189816-MS
29.
Lashgari
,
H. R.
,
Sun
,
A. Y.
,
Zhang
,
T. W.
,
Pope
,
G. A.
, and
Lake
,
L. W.
,
2019
, “
Evaluation of Carbon Dioxide Storage and Miscible gas EOR in Shale oil Reservoirs
,”
Fuel
,
241
, pp.
1223
1235
. 10.1016/j.fuel.2018.11.076
30.
Zhang
,
Y.
,
Lashgari
,
H. R.
,
Di
,
Y.
, and
Sepehrnoori
,
K.
,
2017
, “
Capillary Pressure Effect on Phase Behavior of CO2/Hydrocarbons in Unconventional Reservoirs
,”
Fuel
,
197
, pp.
575
582
. 10.1016/j.fuel.2017.02.021
31.
Shen
,
Z. Q.
, and
Sheng
,
J. J.
,
2019
, “
Optimization Strategy to Reduce Asphaltene Deposition-Associated Damage During CO2 Huff-n-Puff Injection in Shale
,”
Arabian J. Sci. Eng.
,
44
(
6
), pp.
6179
6193
. 10.1007/s13369-018-03701-w
32.
Li
,
L.
, and
Sheng
,
J. J.
,
2016
, “
Experimental Study of Core Size Effect on CH4 Huff-n-Puff Enhanced Oil Recovery in Liquid-Rich Shale Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1392
1402
. 10.1016/j.jngse.2016.08.028
33.
Wang
,
M.
,
Wang
,
L.
,
Zhou
,
W.
, and
Yu
,
W.
,
2019
, “
Lean gas Huff and Puff Process for Eagle Ford Shale: Methane Adsorption and gas Trapping Effects on EOR
,”
Fuel
,
248
, pp.
143
151
. 10.1016/j.fuel.2019.03.084
34.
Li
,
L.
, and
Sheng
,
J. J.
,
2017
, “
Numerical Analysis of Cyclic CH4 Injection in Liquid-Rich Shale Reservoirs Based on the Experiments Using Different-Diameter Shale Cores and Crude oil
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
1
14
. 10.1016/j.jngse.2017.01.017
35.
Maqbool
,
T.
,
Srikiratiwong
,
P.
, and
Fogler
,
H. S.
,
2011
, “
Effect of Temperature on the Precipitation Kinetics of Asphaltenes
,”
Energy Fuels
,
25
(
2
), pp.
694
700
. 10.1021/ef101112r
36.
Chandio
,
Z. A.
,
Ramasamy
,
M.
, and
Mukhtar
,
H. B.
,
2015
, “
Temperature Effects on Solubility of Asphaltenes in Crude Oils
,”
Chem. Eng. Res. Des.
,
94
, pp.
573
583
. 10.1016/j.cherd.2014.09.018
37.
Ashoori
,
S.
, and
Balavi
,
A.
,
2014
, “
An Investigation of Asphaltene Precipitation During Natural Production and the CO2 Injection Process
,”
Liquid Fuels Technol.
,
32
(
11
), pp.
1283
1290
. 10.1080/10916466.2011.633590
38.
Parvazdavani
,
M.
,
Abbasi
,
S.
, and
Zarereisabadi
,
M.
,
2017
, “
Experimental Study of Gas–Oil Relative Permeability Curves at Immiscible/Near Miscible Gas Injection in Highly Naturally Fractured Reservoir
,”
Egypt. J. Pet.
,
26
(
1
), pp.
171
180
. 10.1016/j.ejpe.2016.01.002
39.
Dong
,
X. M.
,
Shi
,
Y.
, and
Yang
,
D. Y.
,
2018
, “
Quantification of Mutual Mass Transfer of CO2/N2–Light oil Systems by Dynamic Volume Analysis
,”
Ind. Eng. Chem. Res.
,
57
(
48
), pp.
16495
16507
. 10.1021/acs.iecr.8b03983
40.
Shen
,
Z. Q.
, and
Sheng
,
J. J.
,
2016
, “
Experimental Study of Asphaltene Aggregation During CO2 and CH4 Injection in Shale Oil Reservoirs
,”
Soc. Pet. Eng.
10.2118/179675-MS
41.
Aguilera
,
R.
,
2006
, “
Effect of Fracture Compressibility on Oil Recovery From Stress-Sensitive Naturally Fractured Reservoirs
,”
J. Can. Pet. Technol.
,
45
(
12
), pp.
49
59
. 10.2118/06-12-01
42.
Maroudas
,
A.
,
1966
, “
Particle Deposition in Granular Filter Media-2
,”
Filtr. Sep.
,
3
(
2
), pp.
115
121
.
43.
Guo
,
S. P.
,
Huang
,
Y. Z.
, and
Zhou
,
J.
,
1990
,
Physical and Chemical Seepage: Microscopic Mechanism
,
Science Press
,
Beijing
.
44.
Computer Modelling Group Ltd
,
2017
, WINPROP User’s Manual.
45.
Behbahani
,
T. J.
,
Ghotbi
,
C.
,
Taghikhani
,
V.
, and
Shahrabadi
,
A.
,
2013
, “
A Modified Scaling Equation Based on Properties of Bottom Hole Live oil for Asphaltene Precipitation Estimation Under Pressure Depletion and gas Injection Conditions
,”
Fluid Phase Equilib.
,
358
, pp.
212
219
. 10.1016/j.fluid.2013.08.027
46.
Zendehboudi
,
S.
,
Shafiei
,
A.
,
Bahadori
,
A.
,
James
,
L. A.
,
Elkamel
,
A.
, and
Lohi
,
A.
,
2014
, “
Asphaltene Precipitation and Deposition in oil Reservoirs—Technical Aspects, Experimental and Hybrid Neural Network Predictive Tools
,”
Chem. Eng. Res. Des.
,
92
(
5
), pp.
857
875
. 10.1016/j.cherd.2013.08.001
47.
Song
,
C. Y.
, and
Yang
,
D. Y.
,
2017
, “
Experimental and Numerical Evaluation of CO2 Huff-n-Puff Processes in Bakken Formation
,”
Fuel
,
190
(
4
), pp.
145
162
. 10.1016/j.fuel.2016.11.041
48.
Kohse
,
B. F.
, and
Nghiem
,
L. X.
,
2004
, “
Modelling Asphaltene Precipitation and Deposition in a Compositional Reservoir Simulator
,”
Soc. Pet. Eng.
10.2118/89437-MS
You do not currently have access to this content.