Abstract

Drilling-induced formation damage is the key factor dominating the failure of the development of hydrocarbon reservoirs with low-permeability (i.e., tight formation). In this paper, a new low-damage drilling fluid was formulated, evaluated, and applied to well-drilling operations in a sandstone oil reservoir with low-permeability in the Shengli Oilfield, China. To formulate this low-damage drilling fluid, filter-cake forming agents were used to prevent fluid loss, inhibitors were used to enhance the shale inhibition of the fluid, surfactants were used to minimize water block, and inorganic salts were used to enhance compatibility. A holistic experimental approach combining micro-computed tomography (CT), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) techniques was designed to identify the underlying interactions between new and conventional drilling fluids and rock samples as well as the corresponding damage mechanisms, demonstrating the significant mitigation effects of the newly formulated drilling fluid on formation damage, which mainly results from the hydration of clay minerals and the invasion of solid particles. The newly formulated low-damage drilling fluid then extended its applications to well-drilling operations with excellent performance. Not only can the new low-damage drilling fluid avoid non-fracturing stimulation, but also reduce the drilling operational costs and time, minimize the formation damage, and facilitate extending the reservoir life for a longer time.

References

1.
Liu
,
Y. F.
, and
Chen
,
L. L.
,
2012
, “
Ecological Environment Issue in the Western Oil-Gas Resources Development
,”
Adv. Mater. Res.
,
347
, pp.
218
224
.
2.
Bennion
,
D. B.
,
Thomas
,
F. B.
, and
Bietz
,
R. F.
,
1996
, “
Low Permeability gas Reservoirs: Problems, Opportunities and Solutions for Drilling, Completion, Stimulation and Production
,”
Paper presented at the SPE Gas Technology Symposium
,
Calgary, AB
,
Apr. 28–May 1
,
SPE-35577-MS
.
3.
Liu
,
G.
,
Bai
,
Y.
,
Gu
,
D.
,
Lu
,
Y.
, and
Yang
,
D.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
. 10.1306/0108181613217061
4.
Liu
,
G.
,
Yin
,
H.
,
Lan
,
Y.
,
Fei
,
S.
, and
Yang
,
D.
,
2020
, “
Experimental Determination of Dynamic Pore-Throat Structure With Consideration of Effective Stress
,”
Mar. Pet. Geol.
,
113
, p.
104170
. 10.1016/j.marpetgeo.2019.104170
5.
Liu
,
X.
,
Yang
,
D.
, and
Chen
,
A.
,
2020
, “
Simultaneous Interpretation of Relative Permeability and Capillary Pressure for a Naturally Fractured Carbonate Formation From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033001
. 10.1115/1.4045084
6.
Tian
,
L.
,
Feng
,
B.
,
Zheng
,
S.
,
Gu
,
D.
,
Ren
,
X.
, and
Yang
,
D.
,
2019
, “
Performance Evaluation of gas Production With Consideration of Dynamic Capillary Pressure in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022902
. 10.1115/1.4041410
7.
Liu
,
X.
, and
Yang
,
D.
,
2020
, “
Simultaneous Interpretation of Three-Phase Relative Permeability and Capillary Pressure for a Tight Carbonate Reservoir From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063001
. 10.1115/1.4045470
8.
Luo
,
M.
,
Sun
,
T.
,
Sun
,
H.
,
Lv
,
Z.
,
Wen
,
Q.
, and
Yang
,
D.
,
2017
, “
Performance Evaluation of Water Control With Nanoemulsion as Pre-Pad Fluid in Hydraulically Fracturing Tight gas Formations
,”
Energy Fuels
,
31
(
4
), pp.
3698
3707
. 10.1021/acs.energyfuels.6b03291
9.
Fan
,
Z.
,
Yang
,
D.
, and
Li
,
X.
,
2019
, “
Quantification of Sand Production by use of a Pressure-Gradient-Based Sand Failure Criterion
,”
SPE J.
,
24
(
3
), pp.
988
1001
. 10.2118/185009-PA
10.
Fan
,
Z.
,
Yang
,
D.
, and
Li
,
X.
,
2020
, “
Characterization of Multiphase Flow in CHOPS Processes Using a Pragmatic Framework
,”
SPE Reservoir Eval. Eng.
,
23
(
3
), pp.
930
942
. 10.2118/186080-PA
11.
Yang
,
S.
,
Fan
,
Z.
, and
Yang
,
D.
,
2020
, “
A Modified Pressure-Gradient-Based (PGB) Sand Failure Criterion for Dynamically and Preferentially Characterizing Wormhole Growth and Propagation During CHOPS Processes
,”
J. Pet. Sci. Eng.
,
192
, p.
107250
. 10.1016/j.petrol.2020.107250
12.
Zhao
,
J.
,
Zhang
,
G.
,
Xu
,
Y.
,
Lin
,
A.
,
Zhao
,
J.
, and
Yang
,
D.
,
2019
, “
Enhancing Rate of Penetration in a Tight Formation With High-Pressure Water Jet (HPWJ) via a Downhole Pressurized Drilling Tool
,”
J. Pet. Sci. Eng.
,
174
, pp.
1194
1207
. 10.1016/j.petrol.2018.11.042
13.
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Filter Cake Properties of Water-Based Drilling Fluids Under Static and Dynamic Conditions Using CT Scan
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042201
. 10.1115/1.4023483
14.
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
, and
Nasr-El-Din
,
H. A.
,
2012
, “
Characterization of Filter Cake Generated by Water-Based Drilling Fluids Using CT Scan
,”
SPE Drill. Complet. J.
,
27
(
2
), pp.
282
293
. 10.2118/144098-PA
15.
Siddig
,
O.
,
Mahmoud
,
A.
, and
Elkatatny
,
S. M.
,
2020
, “
A Review of Different Approaches for Water-Based Drilling Fluid Filter Cake Removal
,”
J. Pet. Sci. Eng.
,
192
, p.
107346
. 10.1016/j.petrol.2020.107346
16.
Bennion
,
D. B.
,
Thomas
,
F. B.
,
Bietz
,
R. F.
, and
Bennion
,
D. W.
,
1996
, “
Water and Hydrocarbon Phase Trapping in Porous Media-Diagnosis, Prevention and Treatment
,”
J. Can. Pet. Technol.
,
35
(
10
), pp.
29
36
. 10.2118/96-10-02
17.
Bennion
,
D. B.
,
2002
, “
An Overview of Formation Damage Mechanisms Causing a Reduction in the Productivity and Injectivity of oil and gas Producing Formations
,”
J. Can. Pet. Technol.
,
41
(
11
), pp.
29
36
. 10.2118/02-11-DAS
18.
Wang
,
J. Y.
,
Holditch
,
S. A.
, and
McVay
,
D. A.
,
2012
, “
Effect of gel Damage on Fracture Fluid Cleanup and Long-Term Recovery in Tight gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
9
, pp.
108
118
. 10.1016/j.jngse.2012.05.007
19.
Mohamed
,
A.
,
Elkatatny
,
S. M.
, and
Al-Majed
,
A.
,
2020
, “
Removal of Calcium Carbonate Water-Based Filter Cake Using a Green Biodegradable Acid
,”
Sustainability
,
12
(
3
), p.
994
. 10.3390/su12030994
20.
Bageri
,
B.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Al-Mutairi
,
S. H.
,
Elkatatny
,
S. M.
, and
Shawabkeh
,
R. A.
,
2017
, “
Single Stage Filter Cake Removal of Barite Weighted Water Based Drilling Fluid
,”
J. Pet. Sci. Eng.
,
149
(
20
), pp.
476
484
. 10.1016/j.petrol.2016.10.059
21.
Bageri
,
B.
,
Mohammed
,
B.
,
Mahmoud
,
M.
,
Patil
,
S.
,
Mohamed
,
A.
, and
Elkatatny
,
S. M.
,
2019
, “
Effect of Arenite, Calcareous, Argillaceous, and Ferruginous Sandstone Cuttings on Filter Cake and Drilling Fluid Properties in Horizontal Wells
,”
Geofluids
,
2019
, p.
1956715
. 10.1155/2019/1956715
22.
Bageri
,
B.
,
Elkatatny
,
S. M.
,
Mahmoud
,
M. A.
, and
Al-Majed
,
A.
,
2017
, “
Impact of Sand Content on Filter Cake and Drilling Fluid Properties in Extended Reach Horizontal Wells
,”
Int. J. Oil, Gas Coal Technol.
,
19
(
2
), p.
135
. 10.1504/IJOGCT.2018.094540
23.
Mahmoud
,
M. A.
,
Bageri
,
B.
,
Elkatatny
,
S. M.
, and
Al-Mutairi
,
S. H.
,
2017
, “
Modeling of Filter Cake Composition in Maximum Reservoir Contact and Extended Reach Horizontal Wells in Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
0329041
. 10.1115/1.4035022
24.
Ghofrani
,
R.
,
Zhang
,
Y.
, and
Bosch
,
V.
,
1996
, “
New Method in Evaluating the Formation Damage in Laboratorial Investigations
,”
Paper presented at the SPE Formation Damage Control Symposium
,
Lafayette, LA
,
Feb. 14–15
,
SPE-35151-MS
.
25.
Chen
,
Z.
,
Khaja
,
N.
,
Valencia
,
K.
, and
Rahman
,
S. S.
,
2006
, “
Formation Damage Induced by Fracture Fluids in Coalbed Methane Reservoirs
,”
Paper presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Adelaide, Australia
,
Sept. 11–13
,
SPE-101127-MS
.
26.
Zhang
,
H.
,
Yan
,
J.
,
Lu
,
Y.
,
Shu
,
Y.
, and
Zhao
,
S.
,
2009
, “
Experimental Study of low-Damage Drilling Fluid to Minimize Waterblocking of Low-Permeability Gas Reservoirs
,”
Pet. Sci.
,
6
(
3
), pp.
271
276
. 10.1007/s12182-009-0043-7
27.
Rostami
,
A.
, and
Nasr-El-Din
,
H. A.
,
2014
, “
Microemulsion vs. Surfactant Assisted Gas Recovery in Low Permeability Formations With Water Blockage
,”
Paper presented at the SPE Western North American and Rocky Mountain Joint Meeting
,
Denver, CO
,
Apr. 17–18
,
SPE-169582-MS
.
28.
Abbas
,
A. K.
,
Flori
,
R. E.
,
Ahmed
,
A. A.
, and
Alsaba
,
M.
,
2018
, “
Laboratory Analysis to Assess Shale Stability for the Zubair Formation, Southern Iraq
,”
J. Nat. Gas Sci. Eng.
,
56
, pp.
315
323
. 10.1016/j.jngse.2018.05.041
29.
Agbasimalo
,
N.
, and
Radonjic
,
M.
,
2014
, “
Experimental Study of the Impact of Drilling Fluid Contamination on the Integrity of Cement-Formation Interface
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042908
. 10.1115/1.4027566
30.
Li
,
J.
,
Yang
,
P.
,
Guang
,
J.
,
Sun
,
Y.
,
Kuang
,
X.
, and
Chen
,
S.
,
2014
, “
A new Type of Whole oil-Based Drilling Fluid
,”
Pet. Explor. Dev.
,
41
(
4
), pp.
538
544
. 10.1016/S1876-3804(14)60064-1
31.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Luquot
,
L.
,
2019
, “
Microscopic Determination of Remaining oil Distribution in Sandstones with Different Permeability Scales Using Computed Tomography Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
. 10.1115/1.4043131
32.
Mahmoud
,
M. A.
,
2014
, “
Evaluating the Damage Caused by Calcium Sulfate Scale Precipitation During low- and High-Salinity-Water Injection
,”
J. Can. Pet. Technol.
,
53
(
3
), pp.
141
150
. 10.2118/164634-PA
33.
Hao
,
S. Q.
,
2011
, “
A Study to Optimize Drilling Fluids to Improve Borehole Stability in Natural gas Hydrate Frozen Ground
,”
J. Pet. Sci. Eng.
,
76
(
3–4
), pp.
109
115
. 10.1016/j.petrol.2011.01.014
34.
Li
,
X.
, and
Chen
,
E. D.
,
2016
, “
Application of low Damage Drilling Fluid in Yibei Area
,”
Drill. Fluid Completion Fluid
,
33
(
2
), pp.
64
68
.
35.
Kong
,
X.
, and
Dhadi
,
M.
,
2010
, “
Applications of Micro and Nano Technologies in the Oil and Gas Industry-Overview of the Recent Progress
,”
Paper presented at the SPE Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, UAE
,
Nov. 1–4
,
SPE-138241-MS
.
36.
Li
,
L.
,
Xu
,
X.
,
Sun
,
J.
,
Yuan
,
X.
, and
Li
,
Y.
,
2012
, “
Vital Role of Nanomaterials in Drilling Fluid and Reservoir Protection Applications
,”
Paper presented at the SPE Abu Dhabi International Petroleum Conference and Exhibition
,
Abu Dhabi, UAE
,
Nov. 11–14
,
SPE-160940-MS
.
37.
Qiu
,
C.
,
Wang
,
B.
,
He
,
X.
,
Chen
,
E.
, and
Zhang
,
H.
,
2015
, “
ROP Enhancing Drilling Fluid Technology for Block I of Central Junggar Basin
,”
Complex Hydrocarbon Reservoirs
,
8
(
3
), pp.
71
74
.
38.
Panga
,
M. K. R.
,
Ooi
,
Y. S.
,
Koh
,
P. L.
,
Chan
,
K. S.
,
Enkababian
,
P. G.
,
Cheneviere
,
P.
, and
Samuel
,
M. M.
,
2006
, “
Wettability Alteration for Water Block Prevention in High Temperature gas Wells
,”
Paper presented at the SPE Europec/EAGE Annual Conference and Exhibition
,
Vienna, Austria
,
June 12–15
,
SPE-100182-MS
.
39.
Fan
,
H.
,
Lyu
,
J.
,
Zhao
,
J.
,
Zhao
,
S.
,
Fan
,
H.
,
Geng
,
J.
, and
Kang
,
W.
,
2016
, “
Evaluation Method and Treatment Effectiveness Analysis of Anti-Water Blocking Agent
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
1374
1380
. 10.1016/j.jngse.2016.06.052
40.
Lauzon
,
R. V.
, and
Reid
,
K. I. G.
,
1979
, “
New Rheological Model Offers Field Alternative
,”
Oil Gas J.
,
77
(
21
), pp.
51
57
.
41.
Nasiri
,
M.
,
Ashrafizadeh
,
S. N.
, and
Ghalambor
,
A.
,
2009
, “
Synthesis of a Novel Ester-Based Drilling Fluid Applicable to High Temperature Conditions
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
013103
. 10.1115/1.3066367
42.
Recommended Practice
,
1988
, “Standard Procedure for Field Testing Drilling Fluid,”
Recommended Practice
, Vol.
13
, 12th ed.,
API
,
Washington, DC
, pp.
7
9
. (B (RP 13B)).
43.
Zhong
,
H. Y.
,
Qiu
,
Z. S.
,
Tang
,
Z. C.
,
Zhang
,
X.
,
Xu
,
J. G.
, and
Huang
,
W. A.
,
2016
, “
Study of 4, 4’-Methylenebis-Cyclohexanamine as a High Temperature-Resistant Shale Inhibitor
,”
J. Mater. Sci
.,
51
(
16
), pp.
1
13
. 10.1007/s10853-016-0037-y
44.
Beg
,
M.
,
Sharma
,
S.
, and
Ojha
,
U.
,
2018
, “
Effect of Cationic Copolyelectrolyte Additives on Drilling Fluids for Shales
,”
J. Pet. Sci. Eng.
,
161
, pp.
506
514
. 10.1016/j.petrol.2017.12.009
45.
Jiang
,
G.
,
Qi
,
Y.
,
An
,
Y.
,
Huang
,
X.
, and
Ren
,
Y.
,
2016
, “
Polyethyleneimine as Shale Inhibitor in Drilling Fluid
,”
Appl. Clay Sci.
,
127–128
, pp.
70
77
.
46.
Zhao
,
X.
,
Qiu
,
Z.
,
Wang
,
M.
,
Huang
,
W.
, and
Zhang
,
S.
,
2018
, “
Performance Evaluation of a Highly Inhibitive Water-Based Drilling Fluid for Ultralow Temperature Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012906
. 10.1115/1.4037712
47.
Shang
,
J.
,
Flury
,
M.
,
Harsh
,
J. B.
, and
Zollars
,
R. L.
,
2008
, “
Comparison of Different Methods to Measure Contact Angles of Soil Colloids
,”
J. Colloid Interface Sci.
,
328
(
2
), pp.
299
307
. 10.1016/j.jcis.2008.09.039
48.
Green
,
J.
,
Cameron
,
R.
,
Patey
,
I.
,
Nagassar
,
V.
, and
Quine
,
M.
,
2013
, “
Use of Micro-CT Scanning Visualisations to Improve Interpretation of Formation Damage Laboratory Tests Including a Case Study From the South Morecambe Field
,”
Paper Presented at the SPE European Formation Damage Conference and Exhibition
,
Noordwijk, The Netherlands
,
June 5–7
,
SPE-165110-MS
.
49.
Bird
,
M. B.
,
Butler
,
S. L.
,
Hawkes
,
C. D.
, and
Kotzer
,
T.
,
2014
, “
Numerical Modeling of Fluid and Electrical Currents Through Geometries Based on Synchrotron X-ray Tomographic Images of Reservoir Rocks Using Avizo and COMSOL
,”
Comput. Geosci.
,
73
, pp.
6
16
. 10.1016/j.cageo.2014.08.009
50.
Anyanwu
,
C.
, and
Mustapha Unubi
,
M.
,
2016
, “
Experimental Evaluation of Particle Sizing in Drilling Fluid to Minimize Filtrate Losses and Formation Damage
,”
Paper Presented at the SPE Nigeria Annual International Conference and Exhibition
,
Lagos, Nigeria
,
Aug. 2–4
,
SPE-184303-MS
.
You do not currently have access to this content.