Abstract

This study focuses on the investigations of gas turbine power generation system that works on oxy-combustion technology utilizing membrane-assisted oxygen separation. The two investigated systems are (i) a premixed oxy-combustion power generation cycle utilizing an ion transport membrane (ITM)-based air separation unit (ASU) which selectively allows oxygen to permeate from the feeding air and (ii) a non-premixed oxy-fuel combustion power cycle, where oxygen separation takes place, with cogeneration of hydrogen in an integrated combustor. A gas turbine combined cycle that works on conventional air–methane combustion was considered as the base case for this work. Commercial software package Hysys V8 was utilized to conduct the process simulation for the proposed cycles. The two novel cycle designs were proposed and evaluated in comparison with that of the conventional cycle. The first law efficiency of the premixed combustion power cycle was calculated to be 45.9%, a loss of 2.4% as an energy penalty for the oxygen separation. The non-premixed cycle had the lowest first law efficiency of 39.6%, which was 8.7% lower than the efficiency of the base cycle. The lower effectiveness of the cycle could be attributed to the highly endothermic H2O splitting reaction for oxygen production. High irreversibility in the H2O-splitter and the reactor was identified as the main cause of exergy losses. The overall second law efficiency of the non-premixed power cycle was around 50% lesser than that of the other cycles. The energy penalty related to air separation is dominated as the parameter that reduces the efficiencies of the oxy-fuel combustion cycles; however, the premixed combustion cycle performance was found to be comparable to that of the conventional air-combustion cycle.

References

1.
Ritchie
,
H.
,
Roser
,
M.
,
2019
, “
Fossil Fuels
,”
Our World Data.
2.
Eini
,
S.
,
Kontogeorgis
,
G. M.
, and
Rashtchian
,
D.
,
2020
, “
Cost Optimization and Flexibility Analysis for the Liquefaction of an Associated Natural Gas Stream
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062801
. 10.1115/1.4045459
3.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.-F.
, and
Dou
,
H.
,
2016
, “
Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052201
. 10.1115/1.4032621
4.
Singh
,
M.
,
Khadkikar
,
V.
,
Chandra
,
A.
, and
Varma
,
R. K.
,
2011
, “
Grid Interconnection of Renewable Energy Sources at the Distribution Level With Power-Quality Improvement Features
,”
IEEE Trans. Power Delivery
,
26
(
1
), pp.
307
315
. 10.1109/TPWRD.2010.2081384
5.
Hanak
,
D. P.
,
Powell
,
D.
, and
Manovic
,
V.
,
2017
, “
Techno-economic Analysis of Oxy-combustion Coal-Fired Power Plant With Cryogenic Oxygen Storage
,”
Appl. Energy
,
191
, pp.
193
203
. 10.1016/j.apenergy.2017.01.049
6.
IEA
,
2017
,
Key World Energy Statistics
,
International Energy Agency (IEA)
,
Paris, France
.
7.
IEA
,
2015
, “
Carbon Capture and Storage: The Solution for Deep Emissions Reductions
,”
IEA Publications
.
8.
Sabouni
,
R.
,
Kazemian
,
H.
, and
Rohani
,
S.
,
2014
, “
Carbon Dioxide Capturing Technologies: A Review Focusing on Metal Organic Framework Materials (MOFs)
,”
Environ. Sci. Pollut. Res. Int.
,
21
(
8
), pp.
5427
5449
. 10.1007/s11356-013-2406-2
9.
Tahir
,
F.
,
Ali
,
H.
,
Baloch
,
A. A. B.
, and
Jamil
,
Y.
,
2019
, “
Performance Analysis of Air and Oxy-fuel Laminar Combustion in a Porous Plate Reactor
,”
Energies
,
12
(
9
), p.
1706
. 10.3390/en12091706
10.
Imteyaz
,
B.
,
Habib
,
M. A.
, and
Ben-Mansour
,
R.
,
2017
, “
The Characteristics of Oxycombustion of Liquid Fuel in a Typical Water-Tube Boiler
,”
Energy Fuels
,
31
(
6
), pp.
6305
6313
. 10.1021/acs.energyfuels.7b00489
11.
Ali
,
H.
,
Tahir
,
F.
,
Atif
,
M.
, and
Baloch
,
A. A. B.
,
2018
, “
Analysis of Steam Reforming of Methane Integrated with Solar Central Receiver System
,”
Qatar Foundation Annual Research Conference Proceedings
,
Doha, Qatar
,
Mar. 19–20
, p. EEPD969.
12.
Scholes
,
C. A.
,
Smith
,
K. H.
,
Kentish
,
S. E.
, and
Stevens
,
G. W.
,
2010
, “
CO2 Capture From Pre-combustion Processes—Strategies for Membrane Gas Separation
,”
Int. J. Greenhouse Gas Control
,
4
(
5
), pp.
739
755
. 10.1016/j.ijggc.2010.04.001
13.
Habib
,
M. A.
,
Tahir
,
F.
,
Nemitallah
,
M. A.
,
Ahmed
,
W. H.
, and
Badr
,
H. M.
,
2015
, “
Experimental and Numerical Analysis of Oxy-fuel Combustion in a Porous Plate Reactor
,”
Int. J. Energy Res.
,
39
(
9
), pp.
1229
1240
. 10.1002/er.3323
14.
Imteyaz
,
B.
,
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
Jamal
,
A.
,
2015
, “
Investigation of Liquid Ethanol Evaporation and Combustion in Air and Oxygen Environments Inside a 25 kW Vertical Reactor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
229
(
6
), pp.
647
661
. 10.1177/0957650915588854
15.
Jamil
,
Y.
,
Habib
,
M. A.
, and
Nemitallah
,
M. A.
,
2017
, “
CFD Analysis of CO2 Adsorption in Different Adsorbents Including Activated Carbon, Zeolite and Mg-MOF-74
,”
Int. J. Glob. Warm.
,
13
(
1
), p.
57
. 10.1504/IJGW.2017.085785
16.
Merkel
,
T. C.
,
Lin
,
H.
,
Wei
,
X.
, and
Baker
,
R.
,
2010
, “
Power Plant Post-combustion Carbon Dioxide Capture: An Opportunity for Membranes
,”
J. Membr. Sci.
,
359
(
1–2
), pp.
126
139
. 10.1016/j.memsci.2009.10.041
17.
Naims
,
H.
,
2016
, “
Economics of Carbon Dioxide Capture and Utilization—A Supply and Demand Perspective
,”
Environ. Sci. Pollut. Res. Int.
,
23
(
22
), pp.
22226
22241
. 10.1007/s11356-016-6810-2
18.
Ogidiama
,
O. V.
,
Abu Zahra
,
M.
, and
Shamim
,
T.
,
2018
, “
Techno-economic Analysis of a Carbon Capture Chemical Looping Combustion Power Plant
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112004
. 10.1115/1.4040193
19.
Perrin
,
N.
,
Dubettier
,
R.
,
Lockwood
,
F.
,
Tranier
,
J.-P.
,
Bourhy-Weber
,
C.
, and
Terrien
,
P.
,
2015
, “
Oxycombustion for Coal Power Plants: Advantages, Solutions and Projects
,”
Appl. Therm. Eng.
,
74
, pp.
75
82
. 10.1016/j.applthermaleng.2014.03.074
20.
Tahir
,
F.
,
2014
,
Experimental & Numerical Investigations of Oxy-Fuel Combustion Using Porous Plate Reactor
,
King Fahd University of Petroleum and Minerals
,
Dhahran, Saudi Arabia
.
21.
Imteyaz
,
B.
, and
Tahir
,
F.
,
2019
, “
Thermodynamic Analysis of Premixed and Non-premixed Oxy-methane Combustion Cycle With Membrane Assisted Oxygen Separation
,”
Proceedings of 8th Global Conference on Global Warming (GCGW)
,
Doha, Qatar
,
Apr. 22–25
, p.
33
.
22.
Strakey
,
P. A.
,
2019
, “
Oxy-combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070706
. 10.1115/1.4043124
23.
Khan
,
M. M. I.
,
Chowdhury
,
M.
,
Chowdhury
,
A. S. M. A. R.
,
Aboud
,
J.
, and
Love
,
N.
,
2020
, “
Effect of Carbon Dioxide Recirculation and Pressure on Efficiency of the TIPS and ENEL Oxy-coal Power Cycles
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062601
. 10.1115/1.4045539
24.
Imteyaz
,
B.
, and
Habib
,
M. A.
,
2015
, “
Study of Combustion Characteristics of Ethanol at Different Dilution With the Carrier Gas
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032205
. 10.1115/1.4028866
25.
Fu
,
C.
, and
Gundersen
,
T.
,
2013
, “
Exergy Analysis and Heat Integration of a Coal-Based Oxy-combustion Power Plant
,”
Energy Fuels
,
27
(
11
), pp.
7138
7149
. 10.1021/ef400867d
26.
Boot-Handford
,
M. E.
,
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Blunt
,
M. J.
,
Brandani
,
S.
,
Mac Dowell
,
N.
,
Fernández
,
J. R.
,
Ferrari
,
M.-C.
,
Gross
,
R.
,
Hallett
,
J. P.
,
Haszeldine
,
R. S.
,
Heptonstall
,
P.
,
Lyngfelt
,
A.
,
Makuch
,
Z.
,
Mangano
,
E.
,
Porter
,
R. T. J.
,
Pourkashanian
,
M.
,
Rochelle
,
G. T.
,
Shah
,
N.
,
Yao
,
J. G.
, and
Fennell
,
P. S.
,
2014
, “
Carbon Capture and Storage Update
,”
Energy Environ. Sci.
,
7
(
1
), pp.
130
189
. 10.1039/C3EE42350F
27.
Hunt
,
A.
,
Dimitrakopoulos
,
G.
,
Kirchen
,
P.
, and
Ghoniem
,
A. F.
,
2014
, “
Measuring the Oxygen Profile and Permeation Flux Across an Ion Transport Membrane and the Development and Validation of a Multistep Surface Exchange Model
,”
J. Membr. Sci.
,
468
, pp.
62
72
. 10.1016/j.memsci.2014.05.043
28.
Hunt
,
A.
,
Dimitrakopoulos
,
G.
, and
Ghoniem
,
A. F.
,
2015
, “
Surface Oxygen Vacancy and Oxygen Permeation Flux Limits of Perovskite Ion Transport Membranes
,”
J. Membr. Sci.
,
489
, pp.
248
257
. 10.1016/j.memsci.2015.03.095
29.
Kirchen
,
P.
,
Apo
,
D. J.
,
Hunt
,
A.
, and
Ghoniem
,
A. F.
,
2013
, “
A Novel Ion Transport Membrane Reactor for Fundamental Investigations of Oxygen Permeation and Oxy-combustion Under Reactive Flow Conditions
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3463
3470
. 10.1016/j.proci.2012.07.076
30.
Sunarso
,
J.
,
Baumann
,
S.
,
Serra
,
J. M.
,
Meulenberg
,
W.A.
,
Liu
,
S.
,
Lin
,
Y.S.
, and
Diniz da Costa
,
J.C.
,
2008
, “
Mixed Ionic-electronic Conducting (MIEC) Ceramic-Based Membranes for Oxygen Separation
,”
J. Membr. Sci.
,
320
(
1–2
), pp.
13
41
. 10.1016/j.memsci.2008.03.074
31.
Mancini
,
N. D.
, and
Mitsos
,
A.
,
2011
, “
Ion Transport Membrane Reactors for Oxy-combustion—Part I: Intermediate-Fidelity Modeling
,”
Energy
,
36
(
8
), pp.
4701
4720
. 10.1016/j.energy.2011.05.023
32.
Habib
,
M. A.
,
Imteyaz
,
B.
, and
Nemitallah
,
M. A.
,
2020
, “
Second Law Analysis of Premixed and Non-Premixed Oxy-fuel Combustion Cycles Utilizing Oxygen Separation Membranes
,”
Appl. Energy
,
259
, p.
114213
. 10.1016/j.apenergy.2019.114213
33.
Xiong
,
J.
,
Zhao
,
H.
, and
Zheng
,
C.
,
2011
, “
Exergy Analysis of a 600 MW Oxy-combustion Pulverized-Coal-Fired Power Plant
,”
Energy Fuels
,
25
(
8
), pp.
3854
3864
. 10.1021/ef200702k
34.
Xiong
,
J.
,
Zhao
,
H.
, and
Zheng
,
C.
,
2012
, “
Thermoeconomic Cost Analysis of a 600MWeoxy-Combustion Pulverized-Coal-Fired Power Plant
,”
Int. J. Greenhouse Gas Control
,
9
, pp.
469
483
. 10.1016/j.ijggc.2012.05.012
35.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2016
, “
Thermodynamic Analysis and Numerical Optimization of the NET Power Oxy-combustion Cycle
,”
Appl. Energy
,
178
, pp.
505
526
. 10.1016/j.apenergy.2016.06.060
36.
Hong
,
J.
,
Chaudhry
,
G.
,
Brisson
,
J. G.
,
Field
,
R.
,
Gazzino
,
M.
, and
Ghoniem
,
A. F.
,
2009
, “
Analysis of Oxy-Fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor
,”
Energy
,
34
(
9
), pp.
1332
1340
. 10.1016/j.energy.2009.05.015
37.
Pfaff
,
I.
, and
Kather
,
A.
,
2009
, “
Comparative Thermodynamic Analysis and Integration Issues of CCS Steam Power Plants Based on Oxy-combustion With Cryogenic or Membrane Based Air Separation
,”
Energy Procedia
,
1
(
1
), pp.
495
502
. 10.1016/j.egypro.2009.01.066
38.
Castillo
,
R.
,
2011
, “
Thermodynamic Analysis of a Hard Coal Oxyfuel Power Plant With High Temperature Three-End Membrane for Air Separation
,”
Appl. Energy
,
88
(
5
), pp.
1480
1493
. 10.1016/j.apenergy.2010.10.044
39.
Skorek-Osikowska
,
A.
,
Bartela
,
Ł
, and
Kotowicz
,
J.
,
2015
, “
A Comparative Thermodynamic, Economic and Risk Analysis Concerning Implementation of Oxy-combustion Power Plants Integrated With Cryogenic and Hybrid Air Separation Units
,”
Energy Convers. Manage.
,
92
, pp.
421
430
. 10.1016/j.enconman.2014.12.079
40.
Fu
,
Q.
,
Kansha
,
Y.
,
Song
,
C.
,
Liu
,
Y.
,
Ishizuka
,
M.
, and
Tsutsumi
,
A.
,
2016
, “
A Cryogenic Air Separation Process Based on Self-heat Recuperation for Oxy-combustion Plants
,”
Appl. Energy
,
162
, pp.
1114
1121
. 10.1016/j.apenergy.2015.03.039
41.
Dutta
,
R.
,
Parthasarathi
,
G.
, and
Chowdhury
,
K.
,
2011
, “
Customization and Validation of a Commercial Process Simulator for Dynamic Simulation of Helium Liquefier
,”
Energy
,
36
(
5
), pp.
3204
3214
. 10.1016/j.energy.2011.03.009
You do not currently have access to this content.