Abstract

In the current work, an unsteady analysis of methane/air premixed counterflow flame is carried out for different flame conditions and stability parameters considering different strain rate values. The results are presented at unsteady and final steady conditions, and the impact of time-dependent regimes and variations in equivalence ratio, from lean flame to rich one, are analyzed. The governing equations including continuity, momentum, energy, and species are numerically solved with a coupled simple and Piso algorithm. It is also found that when the strain rate value is 1000 s−1, for flame stability, the hydraulic distance of the microchannel must be at least 0.05 mm. Increasing the strain rate results in decreasing the time of stabilizing temperature distribution with a faster quasi-steady equilibrium. The necessity of time-dependent analysis is to comprehend the variations in the main factors of flame structure before reaching the finalized steady-state condition. Therefore, by designing an intermittent automatic valve, if the flow stops in time period of 0.0025 s and starts again, the formation of NO2 and CO2 will be reduced about 50% and 9%, respectively, in a case with a = 100 s−1.

References

1.
Belmont
,
E. L.
,
Schoegl
,
I.
, and
Ellzey
,
J. L.
,
2013
, “
Experimental and Analytical Investigation of Lean Premixed Methane/Air Combustion in a Mesoscale Counter-Flow Reactor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3361
3367
. 10.1016/j.proci.2012.06.087
2.
Burrell
,
R. R.
,
Zhao
,
R.
,
Lee
,
D. J.
,
Burbano
,
H.
, and
Egolfopoulos
,
F. N.
,
2017
, “
Two-Dimensional Effects in Counterflow Methane Flames
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1387
1394
. 10.1016/j.proci.2016.06.071
3.
Escudié
,
D.
,
Haddar
,
E.
, and
Brun
,
M.
,
1999
, “
Influence of Strain Rate on a Premixed Turbulent Flame Stabilized in a Stagnating Flow
,”
Exp. Fluids
,
27
(
6
), pp.
533
541
. 10.1007/s003480050377
4.
Higgins
,
B.
,
McQuay
,
M.
,
Lacas
,
F.
, and
Candel
,
S.
,
2001
, “
An Experimental Study on the Effect of Pressure and Strain Rate on CH Chemiluminescence of Premixed Fuel-Lean Methane/Air Flames
,”
Fuel
,
80
(
11
), pp.
1583
1591
. 10.1016/S0016-2361(01)00040-0
5.
Pillier
,
L.
,
Idir
,
M.
,
Molet
,
J.
,
Matynia
,
A.
, and
de Persis
,
S.
,
2015
, “
Experimental Study and Modelling of NOx Formation in High Pressure Counter-Flow Premixed CH 4/Air Flames
,”
Fuel
,
150
, pp.
394
407
. 10.1016/j.fuel.2015.01.099
6.
Wada
,
T.
,
Mizomoto
,
M.
,
Yokomori
,
T.
, and
Peters
,
N.
,
2009
, “
Extinction of Methane/Air Counterflow Partially Premixed Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1075
1082
. 10.1016/j.proci.2008.05.093
7.
Matynia
,
A.
,
Molet
,
J.
,
Roche
,
C.
,
Idir
,
M.
,
de Persis
,
S.
, and
Pillier
,
L.
,
2012
, “
Measurement of OH Concentration Profiles by Laser Diagnostics and Modeling in High-Pressure Counterflow Premixed Methane/air and Biogas/Air Flames
,”
Combust. Flame
,
159
(
11
), pp.
3300
3311
. 10.1016/j.combustflame.2012.06.013
8.
Mungekar
,
H.
, and
Atreya
,
A.
,
2007
, “
NO Formation in Counterflow Partially Premixed Flames
,”
Combust. Flame
,
148
(
3
), pp.
148
157
. 10.1016/j.combustflame.2006.10.003
9.
Salusbury
,
S. D.
, and
Bergthorson
,
J. M.
,
2015
, “
Maximum Stretched Flame Speeds of Laminar Premixed Counter-Flow Flames at Variable Lewis Number
,”
Combust. Flame
,
162
(
9
), pp.
3324
3332
. 10.1016/j.combustflame.2015.05.023
10.
Chen
,
S.
,
Li
,
J.
,
Han
,
H.
,
Liu
,
Z.
, and
Zheng
,
C.
,
2010
, “
Effects of Hydrogen Addition on Entropy Generation in Ultra-Lean Counter-Flow Methane-Air Premixed Combustion
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3891
3902
. 10.1016/j.ijhydene.2010.01.120
11.
Panoutsos
,
C.
,
Hardalupas
,
Y.
, and
Taylor
,
A.
,
2009
, “
Numerical Evaluation of Equivalence Ratio Measurement Using OH* and CH* Chemiluminescence in Premixed and Non-premixed Methane–Air Flames
,”
Combust. Flame
,
156
(
2
), pp.
273
291
. 10.1016/j.combustflame.2008.11.008
12.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2002
, “
Modelling of Premixed Counterflow Flames Using the Flamelet-Generated Manifold Method
,”
Combust. Theory Modell.
,
6
(
3
), pp.
463
478
. 10.1088/1364-7830/6/3/305
13.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2013
, “
Extinction of Laminar, Premixed, Counter-Flow Methane/Air Flames Under Unsteady Conditions: Effect of H 2 Addition
,”
Chem. Eng. Sci.
,
93
, pp.
266
276
. 10.1016/j.ces.2013.02.009
14.
Guo
,
H.
,
Smallwood
,
G. J.
, and
Gülder
,
ÖL
,
2007
, “
The Effect of Reformate Gas Enrichment on Extinction Limits and NO X Formation in Counterflow CH 4/Air Premixed Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1197
1204
. 10.1016/j.proci.2006.07.205
15.
Fanaee
,
S.
,
2017
, “
Self-Similar Nanosymptotic Solution of Multireaction Stationary Flow in Catalytic Microcombustor
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
1
10
.
16.
Fanaee
,
S.
,
2016
, “
The Analytical Modeling of Finite-Length Homogenous Micro-combustor for a Hydrogen-Oxygen Mixture With Wall Temperature Effects
,”
J. Mech.
,
32
(
5
), pp.
631
642
. 10.1017/jmech.2016.11
17.
Padilla
,
R. E.
,
Escofet-Martin
,
D.
,
Pham
,
T.
,
Pitz
,
W. J.
, and
Dunn-Rankin
,
D.
,
2018
, “
Structure and Behavior of Water-Laden CH4/Air Counterflow Diffusion Flames
,”
Combust. Flame
,
196
, pp.
439
451
. 10.1016/j.combustflame.2018.06.037
18.
Reyes
,
M.
,
Tinaut
,
F.
,
Giménez
,
B.
, and
Pastor
,
J. V.
,
2018
, “
Effect of Hydrogen Addition on the OH* and CH* Chemiluminescence Emissions of Premixed Combustion of Methane-air Mixtures
,”
Int. J. Hydrogen Energy
,
43
(
42
), pp.
19778
19791
. 10.1016/j.ijhydene.2018.09.005
19.
Edalati-nejad
,
A.
,
Fanaee
,
S. A.
, and
Khadem
,
J.
,
2019
, “
The Unsteady Investigation of Methane-Air Premixed Counterflow Flame Into Newly Proposed Plus-Shaped Channel Over Palladium Catalyst
,”
Energy
,
186
, p.
115833
. 10.1016/j.energy.2019.07.163
20.
Edalati-nejad
,
A.
,
Fanaee
,
S. A.
,
Ghodrat
,
M.
,
Salehi
,
F.
, and
Khadem
,
J.
,
2020
, “
The Time Dependent Investigation of Methane-Air Counterflow Diffusion Flames With Detailed Kinetic and Pollutant Effects Into a Micro/Macro Open Channel
,”
Case Stud. Therm. Eng.
,
18
, p.
100603
. 10.1016/j.csite.2020.100603
21.
Zhang
,
L.
,
Ren
,
X.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2020
, “
A Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082307
. 10.1115/1.4046228
22.
Kolahdooz
,
H.
,
Nazari
,
M.
,
Kayhani
,
M.
,
Ebrahimi
,
R.
, and
Askari
,
O.
,
2019
, “
Effect of Obstacle Type on Methane–Air Flame Propagation in a Closed Duct: An Experimental Study
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112208
. 10.1115/1.4043790
23.
Li
,
Z.
,
Huang
,
G.
,
Jiang
,
C.
,
Qian
,
Y.
,
He
,
Z.
, and
Lu
,
X.
,
2020
, “
Experimental Study of Premixed-Charge Compression Ignition Mode in Low Load Fueled With Butanol Isomers and Diesel Binary Fuels in a Common-Rail Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092303
. 10.1115/1.4046775
24.
Akbarzadeh
,
M.
, and
Birouk
,
M.
,
2020
, “
On the Liftoff of Diffusion Flame: An Experimental and Analytical Study
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042203
. 10.1115/1.4044889
25.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
. 10.1115/1.4042411
26.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
. 10.1115/1.4041412
27.
Du
,
L.
,
Yu
,
G.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of n-Pentane/Oxygen/Diluent Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082206
. 10.1115/1.4042532
28.
Wang
,
Z.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2020
,
Innovations in Sustainable Energy and Cleaner Environment
,
Springer
,
New York
, pp.
195
218
.
29.
Sodagar-Abardeh
,
J.
,
Nasery
,
P.
,
Arabkoohsar
,
A.
, and
Farzaneh-Gord
,
M.
,
2020
, “
Numerical Study of Magnetic Field Influence on Three-Dimensional Flow Regime and Combined-Convection Heat Exchange Within Concentric and Eccentric Rotating Cylinders
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112115
. 10.1115/1.4048227
30.
Edalati-Nejad
,
A.
,
Fanaee
,
S. A.
, and
Ghodrat
,
M.
,
2020
, “
CFD Modeling of Unsteady Counterflow Flame into Rhodium Catalytic Chamber
,”
22nd Australasian Fluid Mechanics Conference AFMC2020
, The University of Queensland. 10.14264/f02452b
You do not currently have access to this content.