Abstract

Research on alternative fuel development gains importance day by day with respect to environmental concerns and issues. Alternative fuel research can yield a revolution for spark ignition (SI) engines due to their being one of the widely used energy systems worldwide. However, most studies miss the environmental impact and economy of alternative fuels, while focusing on performance and emissions characteristics of different alternative fuels. The present paper aims to introduce a novel perspective to evaluate fuels environmentally and economically. For this purpose, exhaust emissions from an SI engine fueled with gasoline, liquefied petroleum gas (LPG), and hydrogen are evaluated at a constant engine speed of 1500 rpm and the same equivalence ratio of 1.0, using the emissions index, power emissions index, energy emissions index, environmental impact, environmental cost, and environmental and social impact cost. At the end of the study, hydrogen is found to be less harmful than other fuels based on its environmental and social impact cost. On the other hand, hydrogen has the highest environmental cost at each ignition timing compared to both LPG and gasoline, whereas gasoline has the best performance from the viewpoint of environmental costs. The current paper is expected to be beneficial in evaluating or comparing different fuels in different engine types to those interested in energy, thermal studies, and environmental sciences.

References

1.
Gschwend
,
D.
,
Soltic
,
P.
,
Wokaun
,
A.
, and
Vogel
,
F.
,
2019
, “
Review and Performance Evaluation of Fifty Alternative Liquid Fuels for Spark-Ignition Engines
,”
Energy Fuels
,
33
(
3
), pp.
2186
2196
. 10.1021/acs.energyfuels.8b02910
2.
Qian
,
Y.
,
Li
,
Z.
,
Yu
,
L.
,
Wang
,
X.
, and
Lu
,
X.
,
2019
, “
Review of the State-of-the-Art of Particulate Matter Emissions From Modern Gasoline Fueled Engines
,”
Appl. Energy
,
238
, pp.
1269
1298
. 10.1016/j.apenergy.2019.01.179
3.
Turkington
,
T.
,
Timbal
,
B.
, and
Rahmat
,
R.
,
2019
, “
The Impact of Global Warming on Sea Surface Temperature Based El Niño–Southern Oscillation Monitoring Indices
,”
Int. J. Climatol.
,
39
(
2
), pp.
1092
1103
. 10.1002/joc.5864
4.
Li
,
Y.
,
Tao
,
H.
,
Su
,
B.
,
Kundzewicz
,
Z. W.
, and
Jiang
,
T.
,
2019
, “
Impacts of 1.5 °C and 2 °C Global Warming on Winter Snow Depth in Central Asia
,”
Sci. Total Environ.
,
651
, pp.
2866
2873
. 10.1016/j.scitotenv.2018.10.126
5.
Akhtar
,
M. K.
,
Simonovic
,
S. P.
,
Wibe
,
J.
, and
MacGee
,
J.
,
2019
, “
Future Realities of Climate Change Impacts: An Integrated Assessment Study of Canada
,”
Int. J. Global Warm.
,
17
(
1
), pp.
59
88
. 10.1504/IJGW.2019.096761
6.
Blakey
,
S.
,
Rye
,
L.
, and
Wilson
,
C. W.
,
2011
, “
Aviation Gas Turbine Alternative Fuels: A Review
,”
P. Combust. Inst.
,
33
(
2
), pp.
2863
2885
. 10.1016/j.proci.2010.09.011
7.
Bastani
,
P.
,
Heywood
,
J. B.
, and
Hope
,
C.
,
2012
, “
Fuel Use and CO2 Emissions Under Uncertainty From Light-Duty Vehicles in the US to 2050
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042202
. 10.1115/1.4007485
8.
Bicer
,
Y.
, and
Dincer
,
I.
,
2018
, “
Life Cycle Environmental Impact Assessments and Comparisons of Alternative Fuels for Clean Vehicles
,”
Resour. Conserv. Recycl.
,
132
, pp.
141
157
. 10.1016/j.resconrec.2018.01.036
9.
Chew
,
K. W.
,
Yap
,
J. Y.
,
Din
,
S. S.
,
Ling
,
T. C.
,
Monash
,
P.
, and
Show
,
P. L.
,
2018
, “
Developments in Fermentative Butanol Production as an Alternative Biofuel Source
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040801
. 10.1115/1.4039737
10.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
11.
Lesmana
,
H.
,
Zhang
,
Z.
,
Li
,
X.
,
Zhu
,
M.
,
Xu
,
W.
, and
Zhang
,
D.
,
2019
, “
NH3 as a Transport Fuel in Internal Combustion Engines: A Technical Review
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070703
. 10.1115/1.4042915
12.
Acar
,
C.
, and
Dincer
,
I.
,
2020
, “
The Potential Role of Hydrogen as a Sustainable Transportation Fuel to Combat Global Warming
,”
Int. J. Hydrogen Energy
,
45
(
5
), pp.
3396
3406
. 10.1016/j.ijhydene.2018.10.149
13.
Gürbüz
,
H.
,
2020
, “
The Effect of H2 Purity on the Combustion, Performance, Emissions and Energy Costs in an SI Engine
,”
Therm. Sci.
,
24
(
1
), pp.
37
49
. 10.2298/TSCI180705315G
14.
Du
,
L.
,
Yu
,
G.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of n-Pentane/Oxygen/Diluent Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082206
. 10.1115/1.4042532
15.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2019
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
. 10.1115/1.4041289
16.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
. 10.1115/1.4029738
17.
Nash
,
L.
,
Klettlinger
,
J.
, and
Vasu
,
S.
,
2017
, “
Ellipsometric Measurements of the Thermal Stability of Alternative Fuels
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062207
. 10.1115/1.4036961
18.
Al-Farayedhi
,
A. A.
,
Al-Dawood
,
A. M.
, and
Gandhidasan
,
P.
,
2000
, “
Effects of Blending MTBE with Unleaded Gasoline on Exhaust Emissions of SI Engine
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
239
247
. 10.1115/1.1288206
19.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
. 10.1115/1.4042720
20.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy- Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
. 10.1115/1.4043709
21.
Gürbüz
,
H.
,
Akçay
,
İH
, and
Buran
,
D.
,
2014
, “
An Investigation on Effect of in-Cylinder Swirl Flow on Performance, Combustion and Cyclic Variations in Hydrogen Fuelled Spark Ignition Engine
,”
J. Energy Inst.
,
87
(
1
), pp.
1
10
. 10.1016/j.joei.2012.03.001
22.
Elfasakhany
,
A.
,
2016
, “
Engine Performance Evaluation and Pollutant Emissions Analysis Using Ternary Bio-Ethanol–Iso-Butanol–Gasoline Blends in Gasoline Engines
,”
J. Clean. Prod.
,
139
, pp.
1057
1067
. 10.1016/j.jclepro.2016.09.016
23.
Zhang
,
Y.
,
Fu
,
J.
,
Shu
,
J.
,
Xie
,
M.
,
Liu
,
J.
, and
Yin
,
Y.
,
2019
, “
Use of a Convenient Thermodynamic Model to Study the Effects of Operating Parameters on Nitrogen Oxides Emissions for a Liquefied Methane Fueled Spark-Ignition Engine
,”
Fuel
,
257
, p.
116001
. 10.1016/j.fuel.2019.116001
24.
Zhao
,
L.
,
Wang
,
X.
,
Wang
,
D.
, and
Su
,
X.
,
2020
, “
Investigation of the Effects of Lean Mixtures on Combustion and Particulate Emissions in a DISI Engine Fueled with Bioethanol-Gasoline Blends
,”
Fuel
,
260
, p.
116096
. 10.1016/j.fuel.2019.116096
25.
Gong
,
C.
,
Li
,
Z.
,
Yi
,
L.
, and
Liu
,
F.
,
2020
, “
Experimental Investigation of Equivalence Ratio Effects on Combustion and Emissions Characteristics of an H2/Methanol Dual-Injection Engine Under Different Spark Timings
,”
Fuel
,
262
, p.
116463
. 10.1016/j.fuel.2019.116463
26.
İlhak
,
,
Doğan
,
R.
,
Akansu
,
S. O.
, and
Kahraman
,
N.
,
2020
, “
Experimental Study on an SI Engine Fueled by Gasoline, Ethanol and Acetylene at Partial Loads
,”
Fuel
,
261
, p.
116148
. 10.1016/j.fuel.2019.116148
27.
Ning
,
L.
,
Duan
,
Q.
,
Wei
,
Y.
,
Zhang
,
X.
,
Yang
,
B.
, and
Zeng
,
K.
,
2020
, “
Experimental Investigation on Combustion and Emissions of a Two-Stroke DISI Engine Fueled with Aviation Kerosene at Various Compression Ratios
,”
Fuel
,
259
, p.
116224
. 10.1016/j.fuel.2019.116224
28.
Uslu
,
S.
, and
Celik
,
M. B.
,
2020
, “
Combustion and Emission Characteristics of Isoamyl Alcohol-Gasoline Blends in Spark Ignition Engine
,”
Fuel
,
262
, p.
116496
. 10.1016/j.fuel.2019.116496
29.
Zhen
,
X.
,
Li
,
X.
,
Wang
,
Y.
,
Liu
,
D.
, and
Tian
,
Z.
,
2020
, “
Comparative Study on Combustion and Emission Characteristics of Methanol/Hydrogen, Ethanol/Hydrogen and Methane/Hydrogen Blends in High Compression Ratio SI Engine
,”
Fuel
,
267
, p.
117193
. 10.1016/j.fuel.2020.117193
30.
Caliskan
,
H.
,
2017
, “
Environmental and Enviroeconomic Researches on Diesel Engines With Diesel and Biodiesel Fuels
,”
J. Clean. Prod.
,
154
, pp.
125
129
. 10.1016/j.jclepro.2017.03.168
31.
Caliskan
,
H.
, and
Mori
,
K.
,
2017
, “
Environmental, Enviroeconomic and Enhanced Thermodynamic Analyses of a Diesel Engine with Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) After Treatment Systems
,”
Energy
,
128
, pp.
128
144
. 10.1016/j.energy.2017.04.014
32.
Gürbüz
,
H.
,
Şöhret
,
Y.
, and
Akçay
,
H.
,
2019
, “
Environmental and Enviroeconomic Assessment of an LPG Fueled SI Engine at Partial Load
,”
J. Environ. Manage.
,
241
, pp.
631
636
. 10.1016/j.jenvman.2019.02.113
33.
Gürbüz
,
H.
,
2016
, “
Parametrical Investigation of Heat Transfer With Fast Response Thermocouple in SI Engine
,”
J. Energy Eng.
,
142
(
4
), p.
04016014
. 10.1061/(ASCE)EY.1943-7897.0000350
34.
Shirk
,
M. G.
,
McGuire
,
T. P.
,
Neal
,
G. L.
, and
Haworth
,
D. C.
,
2008
, “
Investigation of a Hydrogen-Assisted Combustion System for a Light-Duty Diesel Vehicle
,”
Int. J. Hydrog. Energy
,
33
(
23
), pp.
7237
7244
. 10.1016/j.ijhydene.2008.07.128
35.
Gürbüz
,
H.
, and
Akçay
,
H.
,
2015
, “
Experimental Investigation of an Improved Exhaust Recovery System for Liquid Petroleum Gas Fueled Spark Ignition Engine
,”
Therm. Sci.
,
19
(
6
), pp.
2049
2064
. 10.2298/TSCI150417181G
36.
Rahman
,
K. M.
,
2018
, “
Experimental Investigation and CFD Simulation of Mixture Formation and Combustion in Hydrogen Direct Injection Spark-Ignition Engine
,”
PhD Thesis
,
Okayama University, Okayama, Japan
.
37.
Meyer
,
L.
,
Tsatsaronis
,
G.
,
Buchgeister
,
J.
, and
Schebek
,
L.
,
2009
, “
Exergoenvironmental Analysis for Evaluation of the Environmental Impact of Energy Conversion Systems
,”
Energy
,
34
(
1
), pp.
75
89
. 10.1016/j.energy.2008.07.018
38.
Vogtlander
,
J.
,
2019
,
Data on Eco-Costs
,
Delft University of Technology
,
Delft
, The Netherlands.
39.
Vogtlander
,
J.
, and
Bijma
,
A.
,
2000
, “
The Virtual Pollution Prevention Costs 99
,”
Int. J. Life Cycle Ass.
,
5
(
2
), pp.
113
120
. 10.1007/BF02979733
40.
Bicer
,
Y.
, and
Dincer
,
I.
,
2017
, “
Life Cycle Evaluation of Hydrogen and Other Potential Fuels for Aircrafts
,”
Int. J. Hydrog. Energy
,
42
(
16
), pp.
10722
10738
. 10.1016/j.ijhydene.2016.12.119
41.
European Central Bank
,
2020
, “
Euro Foreign Exchange Reference Rates
,” https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/eurofxref-graph-usd.en.html Accessed August 18, 2020.
You do not currently have access to this content.