Abstract

Green energy has seen a huge surge of interest recently due to various environmental and financial reasons. To extract the most out of a renewable system and to go greener, new approaches are evolving. In this paper, the capability of Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System in geometrical optimization of a solar chimney power plant (SCPP) to enhance generated power is investigated to reduce the time cost and errors when optimization is performed with numerical or experimental methods. It is seen that both properly constructed artificial neural networks (ANN) and adaptive-network-based fuzzy inference system (ANFIS) optimized geometries give higher performance than the numerical results. Also, to validate the accuracy of the ANN and ANFIS predictions, the obtained results are compared with the numerical results. Both soft computing methods over predict the power output values with MRE values of 12.36% and 7.25% for ANN and ANFIS, respectively. It is seen that by utilizing ANN and ANFIS algorithms, more power can be extracted from the SCPP system compared to conventional computational fluid dynamics (CFD) optimized geometry with trying a lot more geometries in a notably less time when it is compared with the numerical technique. It is worth mentioning that the optimization method that is developed can be implemented to all engineering problems that need geometric optimization to maximize or minimize the objective function.

References

1.
Zuo
,
L.
,
Liu
,
Z.
,
Ding
,
L.
,
Qu
,
N.
,
Dai
,
P.
,
Xu
,
B.
, and
Yuan
,
Y.
,
2020
, “
Performance Analysis of a Wind Supercharging Solar Chimney Power Plant Combined With Thermal Plant for Power and Freshwater Generation
,”
Energy Convers. Manage.
,
204
, pp.
11
28
.
2.
Thakre
,
S. B.
,
Bhuyar
,
L. B.
,
Dahake
,
S. V.
, and
Wankhade
,
P.
,
2013
, “
Mathematical Correlations Developed for Solar Chimney Power Plant—A Critical Review
,”
Global J. Res. Eng.
,
13
(
1
), pp.
21
26
.
3.
Amudam
,
Y.
, and
Chandramohan
,
V. P.
,
2019
, “
Influence of Thermal Energy Storage System on Flow and Performance Parameters of Solar Updraft Tower Power Plant: A Three-Dimensional Numerical Analysis
,”
J. Cleaner Prod.
,
207
, pp.
136
152
. 10.1016/j.jclepro.2018.09.248
4.
Li
,
J.
,
Guo
,
H.
, and
Huang
,
S.
,
2016
, “
Power Generation Quality Analysis and Geometric Optimization for Solar Chimney Power Plants
,”
Sol. Energy
,
139
, pp.
228
237
. 10.1016/j.solener.2016.09.033
5.
Dhahri
,
A.
, and
Omri
,
A.
,
2013
, “
A Review of Solar Chimney Power Generation Technology
,”
Int. J. Eng. Adv. Technol.
,
2
(
3
), pp.
1
17
.
6.
Al-Kayiem
,
H. H.
, and
Aja
,
O. C.
,
2016
, “
Historic and Recent Progress in Solar Chimney Power Plant Enhancing Technologies
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1269
1292
. 10.1016/j.rser.2015.12.331
7.
Kasaeian
,
A. B.
,
Molana
,
S.
,
Rahmani
,
K.
, and
Wen
,
D.
,
2017
, “
A Review on Solar Chimney Systems
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
954
987
. 10.1016/j.rser.2016.09.081
8.
Bernardes
,
M. A.
,
2010
, “
Solar Chimney Power Plants–Developments and Advancements
,”
Sol. Energy
,
84
(
6
), pp.
978
953
.
9.
Ayadi
,
A.
,
Bouabidi
,
A.
, and
Abid
,
M. S.
,
2018
, “
Experimental and Numerical Analysis of the Collector Roof Height Effect on the Solar Chimney Performance
,”
Renewable Energy
,
115
, pp.
649
662
. 10.1016/j.renene.2017.08.099
10.
Zhou
,
X.
,
Yang
,
J.
,
Xiao
,
B.
,
Hou
,
G.
, and
Xing
,
F.
,
2009
, “
Analysis of Chimney Height for Solar Chimney Power Plant
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
178
185
. 10.1016/j.applthermaleng.2008.02.014
11.
Kasaeian
,
A.
,
Ghalamchi
,
M.
, and
Ghalamchi
,
M.
,
2014
, “
Simulation and Optimization of Geometric Parameters of a Solar Chimney in Tehran
,”
Energy Convers. Manage.
,
83
, pp.
28
34
. 10.1016/j.enconman.2014.03.042
12.
Hu
,
S.
,
Leung
,
D. Y.
, and
Chan
,
J.
,
2017
, “
Impact of the Geometry of Divergent Chimneys on the Power Output of a Solar Chimney Power Plant
,”
Energy
,
120
, pp.
1
11
. 10.1016/j.energy.2016.12.098
13.
Bouabidi
,
A.
,
Ayadi
,
A.
,
Nasraoui
,
H.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2018
, “
Study of Solar Chimney in Tunisia: Effect of the Chimney Configurations on the Local Flow Characteristics
,”
Energy Buildings
,
169
, pp.
27
38
. 10.1016/j.enbuild.2018.01.049
14.
Hassan
,
A.
,
Ali
,
M.
, and
Waqas
,
A.
,
2018
, “
Numerical Investigation on Performance of Solar Chimney Power Plant by Varying Collector Slope and Chimney Diverging Angle
,”
Energy
,
42
, pp.
411
425
. 10.1016/j.energy.2017.10.047
15.
Abdulshaded
,
A.
,
Longstaff
,
A. P.
,
Fletcher
,
S.
, and
Alan
,
M.
,
2013
,
Comparative Study of ANN and ANFIS Prediction Models for Thermal Error Compensation on CNC Machine Tools In: Laser Metrology and Machine Performance
,
X. Lamdamap, 2013, EUSPEN, U.K.
,
79
89
.
16.
Kalogirou
,
S. A.
,
2001
, “
Artificial Neural Networks in Renewable Energy Systems Application: A Review
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
373
401
. 10.1016/S1364-0321(01)00006-5
17.
Kalogirou
,
S. A.
,
Neocleous
,
C. C.
, and
Schizas
,
C. N.
,
1996
, “
Artificial Neural Networks in Modelling the Heat-up Response of a Solar Stream Generation Plant
,”
Proceedings of the International Conference EANN
,
96
, pp.
1
4
.
18.
Ayli
,
E
, and
Ulucak
,
O
,
2020
, “
ANN, and ANFIS Performance Prediction Models for Francis Type Turbines
,”
J. Thermal Sci. Technol.
,
47
(
1
), pp.
87
97
.
19.
Amirkhani
,
S.
,
NAsirivatan
,
S.
,
Kasaeian
,
A. B.
, and
Hajinezhad
,
A.
,
2015
, “
ANN and ANFIS Models to Predict the Performance of Solar Chimney Power Plants
,”
Renewable Energy
,
83
, pp.
597
607
. 10.1016/j.renene.2015.04.072
20.
Isık
,
E.
,
Inallı
,
M.
, and
Celik
,
E.
,
2019
, “
ANN and ANFIS Approaches to Calculate the Heating and Cooling Degree Day Values: The Case of Provinces in Turkey
,”
Arabian J. Sci. Eng.
,
44
(
9
), pp.
7581
7597
. 10.1007/s13369-019-03852-4
21.
Alazba
,
A.
, and
Mashaly
,
A. F.
, “
Assessing the Accuracy of ANN, ANFIS, and MR Techniques in Forecasting Productivity of an Inclined Passive Solar Still in a Hot
Arid Environment
,”
Water SA
,
45
, pp.
239
249
.
22.
Bhattacharya
,
S.
,
Kaluri
,
R.
,
Singh
,
S.
,
Alazab
,
M.
, and
Tariq
,
U.
,
2020
, “
A Novel PCA-Firefly Based XGBoost Classification Model for Intrusion Detection in Networks Using GPU
,”
Electronics
,
9
(
2
), p.
219
. 10.3390/electronics9020219
23.
Gadekallu
,
T. R.
,
Khare
,
N.
,
Bhattacharya
,
S.
,
Singh
,
S.
,
Reddy Maddikunta
,
P. K.
,
Ra
,
I. H.
, and
Alazab
,
M.
,
2020
, “
Early Detection of Diabetic Retinopathy Using PCA-Firefly Based Deep Learning Model
,”
Electronics
,
9
(
2
), p.
274
. 10.3390/electronics9020274
24.
Rm
,
S. P.
,
Maddikunta
,
P. K. R.
,
Parimala
,
M.
,
Koppu
,
S.
,
Reddy
,
T.
,
Chowdhary
,
C. L.
, and
Alazab
,
M.
,
2020
,
An Effective Feature Engineering for DNN Using Hybrid PCA-GWO for Intrusion Detection in IoMT Architecture
.
Computer Communications
.
25.
Alazab
,
M.
,
Khan
,
S.
,
Krishnan
,
S. S. R.
,
Pham
,
Q. V.
,
Reddy
,
M. P. K.
, and
Gadekallu
,
T. R.
,
2020
, “
A Multidirectional LSTM Model for Predicting the Stability of a Smart Grid
,”
IEEE Access
,
8
, pp.
85454
85463
. 10.1109/ACCESS.2020.2991067
26.
Ghritlahre
,
H. K.
, and
Prasad
,
R. K.
,
2018
, “
Application of ANN Technique to Predict the Performance of Solar Collector Systems
,”
Renewable Sustainable Energy Rev.
,
84
, pp.
75
88
. 10.1016/j.rser.2018.01.001
27.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
,
1983
, “
Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Solar Energy
,
2
(
1
), pp.
3
20
. 10.1080/01425918308909911
28.
Haaf
,
W.
,
1984
, “
Solar Chimneys: Part ii: Preliminary Test Results From the Manzanares Pilot Plant
,”
Int. J. Sustainable Energy
,
2
(
2
), pp.
141
161
.
29.
Wolf
,
M. I.
,
2008
, “
Solar Updraft Towers: Their Role in Remote On-site Generation
,”
The Educational Educypedia
, pp.
1
31
.
30.
Thakre
,
S. B.
,
Bhuyar
,
L. B.
,
Dahake
,
S. V.
, and
Wankhade
,
P.
,
2013
, “
Mathematical Correlations Developed for Solar Chimney Power Plant—A Critical Review
,”
Global J. Res. Eng. Mech. Mechan. Eng.
,
13
(
1
), pp.
21
26
.
31.
Ahmed
,
S. T.
, and
Chaichan
,
M. T.
,
2011
, “
A Study of Free Convection in a Solar Chimney Model
,”
Eng. Technol. J.
,
29
(
14
), pp.
2986
2997
.
32.
Bernardes
,
M. D. S.
,
Voß
,
A.
, and
Weinrebe
,
G.
,
2003
, “
Thermal and Technical Analyses of Solar Chimneys
,”
Sol. Energy
,
75
(
6
), pp.
511
524
. 10.1016/j.solener.2003.09.012
33.
McCulloch
,
W. S.
, and
Pıtts
,
W.
,
1948
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bulletin Math. Biophysics
,
5
(
4
), pp.
115
133
. 10.1007/BF02478259
34.
Ayli
,
E.
,
2020
, “
Modeling of Mıxed Convection in an Enclosure With Using Multiple Regression, ANN and ANFIS Models, Proceedings of the IMeche, PartC
,”
J. Mech. Eng. Sci.
, 10.1177/0954406220914330
35.
Ayli
,
E.
,
2019
, “
Experimental Thermal Performance Analysis of Rectangular Fins Based on Artificial Neural Network Approach and Correlation
,”
Muğla J. Sci. Technol.
, 10.22531/muglajsci.529193
36.
Jang
,
J. S.
, and
Sun
,
C. T.
,
1995
, “
Neuro-fuzzy Modelling and Control
,”
Proc. IEEE
,
83
(
3
), pp.
378
406
. 10.1109/5.364486
37.
Yapici
,
E.
,
Ayl
,
E.
, and
Nsaif
,
O.
,
December 2020
, “
Numerical Investigation on the Performance of a Small Scale Solar Chimney Power Plant for Different Geometrical Parameters
,”
J. Cleaner Prod.
,
276
, p.
122908
. 10.1016/j.jclepro.2020.122908
38.
Ghalamchi
,
M.
,
Kasaeian
,
A.
,
Ghalamchi
,
M.
, and
Mirzahosseini
,
A. H.
,
2016
, “
An Experimental Study on the Thermal Performance of a Solar Chimney With Different Dimensional Parameters
,”
Renewable Energy
,
91
, pp.
477
483
. 10.1016/j.renene.2016.01.091
39.
Esen
,
H.
, and
Inalli
,
2010
, “
ANN and ANFIS Models for Performance Evaluation of a Vertical Ground Source Heat Pump System
,”
Expert Syst. Appl.
,
37
(
12
), pp.
8134
8147
. 10.1016/j.eswa.2010.05.074
40.
Amirkhani
,
S.
,
Nasirivitan
,
S.
,
Kassaeian
,
A.
, and
Hajinezhad
,
A.
,
2015
, “
ANN and ANFIS Models to Predict the Performance of Solar Chimney Power Plants
,”
Renewable Energy
,
83
, pp.
597
607
. http://dx.doi.org/10.1016/j.renene.2015.04.072
You do not currently have access to this content.