Abstract

The present paper simulates and dynamically analyzes a combined heat and power (CHP) system driven by a gas-fueled internal combustion engine. The CHP system uses a heat exchanger to convert the heat loss of the engine to meet heat demand and uses a generator for power generation. Then, the impact of the use or non-use thermal energy storage (TES) is examined on power and heat generation. Given the different demands of different seasons, two smart control strategies are developed concerning time to attain higher efficiency in different seasons. A TES is included in the control strategy for cold and hot seasons, and analyses are performed for a typical week. The gas engine of the CHP system uses time and temperature variables simultaneously to operate smartly by two strategies for a year instead of one single strategy. The results show that when a control strategy with variable partial loads based on temperature and time is employed, the efficiency of the CHP system’s gas engine is improved. Using the results of the new and smart control strategy, the CHP system exhibits an efficiency of 84.2% in the hot season and an efficiency of 87.0% in the cold seasons for a typical week.

References

1.
Kong
,
X. Q.
,
Wang
,
R. Z.
,
Wu
,
J. Y.
,
Huang
,
X. H.
,
Huangfu
,
Y.
,
Wu
,
D. W.
, and
Xu
,
Y. X.
,
2005
, “
Experimental Investigation of a Micro-combined Cooling, Heating and Power System Driven by a Gas Engine
,”
Int. J. Refrig.
,
28
(
7
), pp.
977
987
. 10.1016/j.ijrefrig.2005.04.006
2.
Badami
,
M.
,
Casetti
,
A.
,
Campanile
,
P.
, and
Anzioso
,
F.
,
2007
, “
Performance of an Innovative 120 kWe Natural Gas Cogeneration System
,”
Energy
,
32
(
5
), pp.
823
833
. 10.1016/j.energy.2006.06.006
3.
Ren
,
H.
, and
Gao
,
W.
,
2010
, “
Economic and Environmental Evaluation of Micro CHP Systems With Different Operating Modes for Residential Buildings in Japan
,”
Energy and Buildings
,
42
(
6
), pp.
853
861
. 10.1016/j.enbuild.2009.12.007
4.
Wu
,
J. Y.
,
Wang
,
J. L.
,
Li
,
S.
, and
Wang
,
R. Z.
,
2014
, “
Experimental and Simulative Investigation of a Micro-CCHP (Micro Combined Cooling, Heating and Power) System With Thermal Management Controller
,”
Energy
,
68
, pp.
444
453
. 10.1016/j.energy.2014.02.057
5.
Dorer
,
V.
, and
Weber
,
A.
,
2009
, “
Energy and CO 2 Emissions Performance Assessment of Residential Micro-Cogeneration Systems With Dynamic Whole-Building Simulation Programs
,”
Energy Convers. Manage.
,
50
(
3
), pp.
648
657
. 10.1016/j.enconman.2008.10.012
6.
Entchev
,
E.
,
Gusdorf
,
J.
,
Swinton
,
M.
,
Bell
,
M.
,
Szadkowski
,
F.
,
Kalbfleisch
,
W.
, and
Marchand
,
R.
,
2004
, “
Micro-generation Technology Assessment for Housing Technology
,”
Energy and buildings
,
36
(
9
), pp.
925
931
. 10.1016/j.enbuild.2004.03.004
7.
De Paepe
,
M.
,
D'Herdt
,
P.
, and
Mertens
,
D.
,
2006
, “
Micro-CHP Systems for Residential Applications
,”
Energy Convers. Manage.
,
47
(
18–19
), pp.
3435
3446
. 10.1016/j.enconman.2005.12.024
8.
Wu
,
D.
, and
Wang
,
R.
,
2006
, “
Combined Cooling, Heating and Power: A Review
,”
Prog. Energy Combust. Sci.
,
32
(
5–6
), pp.
459
495
. 10.1016/j.pecs.2006.02.001
9.
Ebrahimi
,
M.
, and
Keshavarz
,
A.
,
2012
, “
Climate Impact on the Prime Mover Size and Design of a CCHP System for the Residential Building
,”
Energy and Buildings
,
54
, pp.
283
289
. 10.1016/j.enbuild.2012.06.029
10.
Jalalzadeh-Azar
,
A. A.
,
Slayzak
,
S.
,
Judkoff
,
R.
,
Schaffhauser
,
T.
, and
DeBlasio
,
R.
,
2005
, “
Performance Assessment of a Desiccant Cooling System in a CHP Application Incorporating an IC Engine
,”
International Journal of Distributed Energy Resources
,
1
(
2
), pp.
163
184
.
11.
Perrone
,
D.
,
Morrone
,
P.
,
Castiglione
,
T.
,
Algieri
,
A.
, and
Bova
,
S.
,
2018
, “
Analysis of a Trigeneration Plant Under Transient Operating Conditions
,”
Energy Procedia
,
148
, pp.
575
582
. 10.1016/j.egypro.2018.08.144
12.
Das
,
B. K.
,
Al-Abdeli
,
Y. M.
, and
Kothapalli
,
G.
,
2018
, “
Effect of Load Following Strategies, Hardware, and Thermal Load Distribution on Stand-Alone Hybrid CCHP Systems
,”
Appl. Energy
,
220
, pp.
735
753
. 10.1016/j.apenergy.2018.03.068
13.
Anatone
,
M.
, and
Panone
,
V.
,
2015
, “
A Model for the Optimal Management of a CCHP Plant
,”
Energy Procedia
,
81
, pp.
399
411
. 10.1016/j.egypro.2015.12.109
14.
Sangi
,
R.
,
Jahangiri
,
P.
,
Thamm
,
A.
, and
Müller
,
D.
,
2017
, “
Dynamic Exergy Analysis–Modelica®-Based Tool Development: A Case Study of CHP District Heating in Bottrop, Germany
,”
Ther. Sci. Eng. Prog.
,
4
, pp.
231
240
. 10.1016/j.tsep.2017.10.008
15.
Taie
,
Z.
,
West
,
B.
,
Szybist
,
J.
,
Edwards
,
D.
,
Thomas
,
J.
,
Huff
,
S.
,
Vishwanathan
,
G.
, and
Hagen
,
C.
,
2018
, “
Detailed Thermodynamic Investigation of an ICE-Driven, Natural Gas-Fueled, 1 kWe Micro-CHP Generator
,”
Energy Convers. Manage.
,
166
, pp.
663
673
. 10.1016/j.enconman.2018.04.077
16.
Rey
,
G.
,
Ulloa
,
C.
,
Cacabelos
,
A.
, and
Barragáns
,
B.
,
2015
, “
Performance Analysis, Model Development and Validation With Experimental Data of an ICE-Based Micro-CCHP System
,”
Appl. Therm. Eng.
,
76
, pp.
233
244
. 10.1016/j.applthermaleng.2014.10.087
17.
Taie
,
Z.
, and
Hagen
,
C.
,
2019
, “
Experimental Thermodynamic First and Second law Analysis of a Variable Output 1–4.5 kWe, ICE-Driven, Natural-Gas Fueled Micro-CHP Generator
,”
Energy Convers. Manage.
,
180
, pp.
292
301
. 10.1016/j.enconman.2018.10.075
18.
TESS: Thermal Energy System Specialists. Thermal Energy System Specialists
.
Web. Mar 20, 2010
. http://www.tess-inc.com/.
19.
Transys 16 Help, a Transient System Simulation Program
, Vol.
5
,
Mathematical Reference
.
20.
NSRDB, 1961-1990: TMY2
.”
Renewable Resource Data Center (RReDC) Home Page
.
National Renewable Energy Laboratory
.
Web. Mar. 20, 2010
.
21.
Ehyaei
,
M. A.
, and
Bahadori
,
M. N.
,
2007
, “
Selection of Micro Turbines to Meet Electrical and Thermal Energy Needs of Residential Buildings in Iran
,”
Energy and Buildings
,
39
(
12
), pp.
1227
1234
. 10.1016/j.enbuild.2007.01.006
22.
Gluesenkamp
,
K.
,
2012
, “
Development and Analysis of Micro Polygeneration Systems and Adsorption Chillers
,” Dissertation,
Mechanical Engineering, University of Maryland
,
College Park, MD
.
You do not currently have access to this content.