Abstract

To figure out the abnormal flow characteristics and thermal performance of supercritical fluids, some detailed information of supercritical pressure n-decane flowing in a horizontally round pipe is studied in terms of secondary flow induced by the huge density change or buoyancy force. According to an evaluation of turbulence models, the shear stress transport k–ω is suitable to execute the case of horizontal flow. It is observed that the temperature distributions between the upper wall region and the lower wall region are asymmetric and the location of the maximum buoyancy force coincided with the position of Tpc (pseudo-critical temperature). The generation of a rotating flow arising from the heated wall determines the occurrence of heat transfer deterioration (HTD). In the boom stage of the HTD phenomenon, a dead zone that is close to the upper wall was formed due to the influence of vortices. In contrast, the maximum buoyancy force is located in the core flow zone and it forces the fluid in the mainstream to participate in the cooling process of the heated wall. In addition, the dead zone in the vicinity of the upper wall is broken. This is the main reason why heat transfer deterioration could be inhibited effectively.

References

1.
Zhang
,
S. L.
,
Qin
,
J.
,
Wei
,
W.
, and
Bao
,
W.
,
2018
, “
Review on Regenerative Cooling Technology of Hypersonic Propulsion
,”
Chin. J. Propul. Technol.
,
39
(
10
), pp.
2177
2190
.
2.
Peng
,
X. B.
,
2016
, “
Development of Combined-Cycle Aerospace Vehicle Technology
,”
Chin. Missiles Space Veh.
,(
5
), pp.
1
6
.
3.
Feng
,
Y.
,
Cao
,
Y.
,
Liu
,
S. Y.
,
Qin
,
J.
,
Hemeda
,
A. A.
, and
Ma
,
Y. B.
,
2019
, “
The Influence of Coking on Heat Transfer in Turbulent Reacting Flow of Supercritical Hydrocarbon Fuels
,”
Int. J. Heat Mass Transfer
,
144
. 10.1016/j.ijheatmasstransfer.2019.118623
4.
Wang
,
N.
,
Pan
,
Y.
, and
Zhou
,
J.
,
2013
, “
Research Status of Active Cooling of Endothermic Hydrocarbon Fueled Scramjet Engine
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
227
(
11
), pp.
1780
1794
. 10.1177/0954410012463642
5.
Qin
,
J.
,
Zhang
,
S. L.
,
Bao
,
W.
,
Zhang
,
L.
, and
Zhou
,
W. X.
,
2012
, “
Effect of Recooling Cycle on Performance of Hydrogen Fueled Scramjet
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18528
18536
. 10.1016/j.ijhydene.2012.09.067
6.
Gascoin
,
N.
,
Gillard
,
P.
,
Bernard
,
S.
,
Bouchez
,
M.
,
Daniau
,
E.
, and
Dufour
,
E.
,
2006
, “
Numerical and Experimental Validation of Transient Modelling for Scramjet Active Cooling with Supercritical Endothermic Fuel
,”
4th International Energy Conversion Engineering Conference and Exhibit (IECEC)
,
San Diego, CA
,
Jun. 26–29
.
7.
Li
,
Y.
,
Sun
,
F.
,
Sunden
,
B.
, and
Xie
,
G. N.
,
2019
, “
Turbulent Heat Transfer Characteristics of Supercritical n-Decane in a Vertical Tube Under Various Operating Pressures
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4652
4669
. 10.1002/er.4602
8.
Shen
,
Z.
,
Yang
,
D.
,
Wang
,
S. Y.
,
Wang
,
W. Y.
, and
Li
,
Y. D.
,
2017
, “
Experimental and Numerical Analysis of Heat Transfer to Water at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
1676
1688
. 10.1016/j.ijheatmasstransfer.2016.12.081
9.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
. 10.1115/1.4040581
10.
Khadse
,
A.
,
Blanchette
,
L.
,
Kapat
,
J.
,
Vasu
,
S.
,
Hossain
,
J.
, and
Donazzolo
,
A.
,
2018
, “
Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle gas Turbines Exhaust Heat Recovery Using Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
071601
. 10.1115/1.4039446
11.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
. 10.1016/j.expthermflusci.2010.06.001
12.
Rao
,
N. T.
,
Oumer
,
A. N.
, and
Jamaludin
,
U. K.
,
2016
, “
State-of-the-art on Flow and Heat Transfer Characteristics of Supercritical CO2 in Various Channels
,”
J. Supercrit. Fluids
,
116
, pp.
132
147
. 10.1016/j.supflu.2016.05.028
13.
Negoescu
,
C. C.
,
Li
,
Y. L.
,
Al-Duri
,
B.
, and
Ding
,
Y. L.
,
2017
, “
Heat Transfer Behaviour of Supercritical Nitrogen in the Large Specific Heat Region Flowing in a Vertical Tube
,”
Energy
,
134
, pp.
1096
1106
. 10.1016/j.energy.2017.04.047
14.
Pizzarelli
,
M.
,
Urbano
,
A.
, and
Nasuti
,
F.
,
2010
, “
Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants
,”
Numer. Heat Transfer, Part A: Appl.
,
57
(
5
), pp.
297
314
. 10.1080/10407780903583016
15.
Edwards
,
T.
,
2003
, “
Liquid Fuels and Propellants for Aerospace Propulsion: 1993–2003
,”
J. Propul. Power
,
19
(
6
), pp.
1089
1107
. 10.2514/2.6946
16.
Hobold
,
G. M.
, and
da Silva
,
A. K.
,
2016
, “
Thermal Behavior of Supercritical Fluids Near the Critical Point
,”
Numer. Heat Transfer, Part A: Appl.
,
69
(
6
), pp.
545
557
. 10.1080/10407782.2015.1080584
17.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
. 10.1016/j.nucengdes.2010.07.002
18.
Schatte
,
G. A.
,
Kohlhepp
,
A.
,
Gschnaidtner
,
T.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2018
, “
Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: an Industrial Scale Test rig
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062002
. 10.1115/1.4039610
19.
Kim
,
T. H.
,
Kwon
,
J. G.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2018
, “
Experimental Investigation on Validity of Buoyancy Parameters to Heat Transfer of CO2 at Supercritical Pressures in a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
222
230
. 10.1016/j.expthermflusci.2017.11.024
20.
Bazargan
,
M.
,
Fraser
,
D.
, and
Chatoorgan
,
V.
,
2011
, “
The Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in a Horizontal Round Tube
,”
ASME J. Heat Transfer
,
133
(
6
), p.
067001
. 10.1115/1.4003432
21.
Wang
,
K. Z.
,
Xu
,
X. X.
,
Liu
,
C.
,
Bai
,
W. J.
, and
Dang
,
C. B.
,
2017
, “
Experimental and Numerical Investigation on Heat Transfer Characteristics of Supercritical CO2 in the Cooled Helically Coiled Tube
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
1645
1655
. 10.1016/j.ijheatmasstransfer.2017.01.004
22.
Zhang
,
W.
,
Wang
,
S. X.
,
Li
,
C. D.
, and
Xu
,
J. L.
,
2015
, “
Mixed Convective Heat Transfer of CO2 at Supercritical Pressures Flowing Upward Through a Vertical Helically Coiled Tube
,”
Appl. Therm. Eng.
,
88
, pp.
61
70
. 10.1016/j.applthermaleng.2014.10.031
23.
Chu
,
X.
, and
Laurien
,
E.
,
2016
, “
Flow Stratification of Supercritical CO2 in a Heated Horizontal Pipe
,”
J. Supercrit. Fluids
,
116
, pp.
172
189
. 10.1016/j.supflu.2016.05.003
24.
Higashiiue
,
S.
,
Kuwahara
,
K.
,
Yanachi
,
S.
, and
Koyama
,
S.
,
2007
, “
Experimental Investigation on Heat Transfer Characteristics of Supercritical Carbon Dioxide Inside a Horizontal Micro-fin Copper Tube During Cooling Process
,”
ASME-JSME Thermal Engineering Summer Heat Transfer Conference
,
Vancouver, British Columbia, Canada
,
Jul. 8–12
.
25.
Dang
,
C. B.
, and
Hihara
,
E.
,
2004
, “
In-tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 1. Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
. 10.1016/j.ijrefrig.2004.04.018
26.
Wang
,
X. C.
,
Xiang
,
M. J.
,
Huo
,
H. J.
, and
Liu
,
Q.
,
2018
, “
Numerical Study on Nonuniform Heat Transfer of Supercritical Pressure Carbon Dioxide During Cooling in Horizontal Circular Tube
,”
Appl. Therm. Eng.
,
141
, pp.
775
787
. 10.1016/j.applthermaleng.2018.06.019
27.
Wang
,
J. Y.
,
Guan
,
Z. Q.
,
Gurgenci
,
H.
,
Hooman
,
K.
,
Veeraragavan
,
A.
, and
Kang
,
X.
,
2018
, “
Computational Investigations of Heat Transfer to Supercritical CO2 in a Large Horizontal Tube
,”
Energy Convers. Manage.
,
157
, pp.
536
548
. 10.1016/j.enconman.2017.12.046
28.
Pizzarelli
,
M.
,
2018
, “
The Status of the Research on the Heat Transfer Deterioration in Supercritical Fluids: A Review
,”
Int. Commun. Heat Mass
,
95
, pp.
132
138
. 10.1016/j.icheatmasstransfer.2018.04.006
29.
Huang
,
D.
,
Wu
,
Z.
,
Sunden
,
B.
, and
Li
,
W.
,
2016
, “
A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress
,”
Appl. Energy
,
162
, pp.
494
505
. 10.1016/j.apenergy.2015.10.080
30.
Ehsan
,
M. M.
,
Guan
,
Z. Q.
, and
Klimenko
,
A. Y.
,
2018
, “
A Comprehensive Review on Heat Transfer and Pressure Drop Characteristics and Correlations with Supercritical CO2 Under Heating and Cooling Applications
,”
Renewable Sustainable Energy Rev.
,
92
, pp.
658
675
. 10.1016/j.rser.2018.04.106
31.
Wang
,
H.
,
Leung
,
L. K. H.
,
Wang
,
W. S.
, and
Bi
,
Q. C.
,
2018
, “
A Review on Recent Heat Transfer Studies to Supercritical Pressure Water in Channels
,”
Appl. Therm. Eng.
,
142
, pp.
573
596
. 10.1016/j.applthermaleng.2018.07.007
32.
Son
,
C. H.
, and
Park
,
S. J.
,
2006
, “
An Experimental Study on Heat Transfer and Pressure Drop Characteristics of Carbon Dioxide During gas Cooling Process in a Horizontal Tube
,”
Int. J. Refrig.
,
29
(
4
), pp.
539
546
. 10.1016/j.ijrefrig.2005.10.010
33.
Qin
,
J.
,
Zhang
,
S. L.
,
Bao
,
W.
,
Duan
,
Y. J.
,
Zhou
,
W. X.
, and
Yu
,
D. R.
,
2012
, “
Off-design Condition Cooling Capacity Analysis of Recooling Cycle for a Scramjet
,”
J. Propul. Power
,
28
(
6
), pp.
1285
1292
. 10.2514/1.B34455
34.
Li
,
Y.
,
Sun
,
F.
,
Xie
,
G. N.
, and
Qin
,
J.
,
2018
, “
Improved Thermal Performance of Cooling Channels with Truncated Ribs for a Scramjet Combustor Fueled by Endothermic Hydrocarbon
,”
Appl. Therm. Eng.
,
142
, pp.
695
708
. 10.1016/j.applthermaleng.2018.07.055
35.
Liu
,
B.
,
Zhu
,
Y. H.
,
Yan
,
J. J.
,
Lei
,
Y. T.
,
Zhang
,
B.
, and
Jiang
,
P. X.
,
2015
, “
Experimental Investigation of Convection Heat Transfer of n-Decane at Supercritical Pressure in Small Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
91
, pp.
734
746
. 10.1016/j.ijheatmasstransfer.2015.07.006
36.
Pizzarelli
,
M.
,
Nasuti
,
F.
, and
Onofri
,
M.
,
2014
, “
Effect of Cooling Channel Aspect Ratio on Rocket Thermal Behavior
,”
AIAA J. Thermophys. Heat Transfer
,
28
(
3
), pp.
410
416
. 10.2514/1.T4299
37.
Wang
,
L. L.
,
Chen
,
Z. J.
, and
Meng
,
H.
,
2013
, “
Numerical Study of Conjugate Heat Transfer of Cryogenic Methane in Rectangular Engine Cooling Channels at Supercritical Pressures
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
237
246
. 10.1016/j.applthermaleng.2013.02.007
38.
Pucciarelli
,
A.
, and
Ambrosini
,
W.
,
2018
, “
On the Effect of Conjugate Heat Transfer on Turbulence in Supercritical Fluids: Results From a LES Application
,”
Ann. Nucl. Energy
,
111
, pp.
340
346
. 10.1016/j.anucene.2017.09.020
39.
Wang
,
Y. H.
,
Li
,
S. F.
, and
Dong
,
M.
,
2014
, “
Numerical Study on Heat Transfer Deterioration of Supercritical n-Decane in Horizontal Circular Tubes
,”
Energies
,
7
(
11
), pp.
7535
7554
. 10.3390/en7117535
40.
Sun
,
F.
,
Li
,
Y.
,
Sunden
,
B.
, and
Xie
,
G. N.
,
2019
, “
The Behaviour of Turbulent Heat Transfer Deterioration in Supercritical Hydrocarbon Fuel Flow Considering Thermal Resistance Distribution
,”
Int. J. Therm. Sci.
,
141
, pp.
19
32
. 10.1016/j.ijthermalsci.2019.03.027
41.
Yang
,
Z. Q.
,
Shan
,
Y. F.
,
Zhang
,
B.
, and
Liu
,
Y. F.
,
2018
, “
Hydrodynamic Characteristics of Cyclohexane in a Horizontal Mini-Tube at Trans- and Supercritical Pressures
,”
Appl. Therm. Eng.
,
129
, pp.
62
69
. 10.1016/j.applthermaleng.2017.10.009
42.
Zhao
,
H. J.
,
Li
,
X. W.
, and
Wu
,
X. X.
,
2017
, “
Numerical Investigation of Supercritical Water Turbulent Flow and Heat Transfer Characteristics in Vertical Helical Tubes
,”
J. Supercrit. Fluids
,
127
, pp.
48
61
. 10.1016/j.supflu.2017.03.016
You do not currently have access to this content.