Abstract

Multi-megawatt thermoelectric energy storage (TEES) based on thermodynamic cycles is a promising alternative to pumped-storage hydroelectricity (PSH) and compressed air energy storage (CAES) systems. The size and cost of energy storage are the main advantages of this technology as it generally uses inexpensive energy storage materials and does not require high-pressure tanks or rare geographic terrain, but the round trip electric efficiency of this technology remains low compared to its competitors. In this context, the objective of this article is to study and simulate a TEES system. A TEES system converts electrical energy to thermal energy by means of an electric heater uses joule heating effect, the system storage this thermal energy in solar salt. Stored thermal energy is converted into electrical energy by a thermal engine uses the organic Rankine cycle (ORC). An auxiliary energy source is integrated with the organic Rankine cycle to improve the round trip electric efficiency of the system. Auxiliary energy source can be solar thermal and geothermal at an average temperature between 100 and 140 °C, which is used to evaporate the working fluid to saturation. The steam is then superheated by stored thermal energy. The superheated steam expands in a turbine producing a good amount of energy compared to the saturated steam expansion. Methanol (CH3OH) has been used as a working fluid because its boiling point is less than 100 °C at the atmospheric pressure.

References

1.
Kaldellis
,
J. K.
, and
Zafikaris
,
D.
,
2007
, “
Optimum Energy Storage Techniques for the Improvement of Renewable Energy Sources-Based Electricity Generation Economic Efficiency
,”
Energy
,
32
(
12
), pp.
2295
2305
. 10.1016/j.energy.2007.07.009
2.
Schoenung
,
S.
Characteristics and Technologies for Long vs. Short-Term Energy Storage
,”
SANDIA Report, Report No. SAND2001-0765
.
3.
EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications
,
2003
,
Department of Energy
,
Independence Ave., Washington, DC
.
4.
Lund
,
H.
,
Salgi
,
G.
,
Elmegaard
,
B.
, and
Andersen
,
A. N.
,
2009
, “
Optimal Operation Strategies of Compressed Air Energy Storage (CAES) on Electricity Spot Markets With Fluctuating Prices
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
799
806
. 10.1016/j.applthermaleng.2008.05.020
5.
Grazzini
,
G.
, and
Milazzo
,
A.
,
2007
, “
Thermodynamic Analysis of CAES /TES Systems Renewable Energy Plants
,”
Renewable Energy
,
33
(
9
), pp.
1998
2006
. 10.1016/j.renene.2007.12.003
6.
Kim
,
Y. M.
, and
Favrat
,
D.
,
2010
, “
Energy and Exergy Analysis of a Micro-Compressed Air Energy Storage and Air Cycle Heating and Cooling System
,”
Energy
,
35
(
1
), pp.
213
220
. 10.1016/j.energy.2009.09.011
7.
Mills
,
D.
,
2004
, “
Advances in Solar Thermal Electricity Technology
,”
Sol. Energy
,
76
(
1–3
), pp.
19
31
. 10.1016/S0038-092X(03)00102-6
8.
Spelling
,
J.
,
Favrat
,
D.
,
Martin
,
A.
, and
Augsburger
,
G.
, “
Thermo-Economic Optimization of a Combined-Cycle Solar Tower Power Plant
,” P
roceedings of ECOS 2010, the 23rd International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems
,
Lausanne, Switzerland
,
June 14–17
,
Selected for Publication in Energy
.
9.
Benato
,
A.
, and
Stoppato
,
A.
,
2018
, “
Pumped Thermal Electricity Storage: A Technology Overview
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
301
315
. 10.1016/j.tsep.2018.01.017
10.
Ayachi
,
F.
,
Tauveron
,
N.
,
Tartière
,
T.
,
Colasson
,
S.
, and
Nguyen
,
D.
,
2016
, “
Thermo-Electric Energy Storage Involving CO2 Transcritical Cycles and Ground Heat Storage
,”
Appl. Therm. Eng.
,
108
, pp.
1418
1428
. 10.1016/j.applthermaleng.2016.07.063
11.
Tauveron
,
N.
,
Macchi
,
E.
,
Nguyen
,
D.
, and
Tartière
,
T.
,
2017
, “
Experimental Study of Supercritical CO2 Heat Transfer in a Thermo-Electric Energy Storage Based on Rankine and Heat Pump Cycles
,”
Energy Procedia
,
129
, pp.
939
946
. 10.1016/j.egypro.2017.09.121
12.
Morandin
,
M.
,
Maréchal
,
F.
,
Mercangoz
,
M.
, and
Butcher
,
F.
,
2012
, “
Conceptual Design of a Thermo-Electrical Energy Storage System Based on Heat Integration of Thermodynamic Cycles—Part A: Methodology and Base Case
,”
Energy
,
45
(
1
), pp.
375
385
. 10.1016/j.energy.2012.03.031
13.
Morandin
,
M.
,
Maréchal
,
F.
,
Mercangoz
,
M.
, and
Butcher
,
F.
,
2012
, “
Conceptual Design of a Thermo-Electrical Energy Storage System Based on Heat Integration of Thermodynamic Cycles—Part B: Alternative System Configurations
,”
Energy
,
45
(
1
), pp.
386
396
. 10.1016/j.energy.2012.03.033
14.
White
,
A.
,
Parks
,
G.
, and
Markides
,
C. N.
,
2013
, “
Thermo Dynamic Analysis of Pumped Thermal Electricity Storage
,”
Appl. Therm. Eng.
,
53
(
2
), pp.
291
298
. 10.1016/j.applthermaleng.2012.03.030
15.
Ruer
,
J.
,
2008
, “
Installation and Methods for Storing and Recovering Electric Energy
,”
WO/2008/148962, No. PCT/FR2008/050712
.
16.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy
,
137
, pp.
800
811
. 10.1016/j.apenergy.2014.08.039
17.
Peterson
,
R. B.
,
2011
, “
A Concept for Storing Utility-Scale Electrical Energy in the Form of Latent Heat
,”
Energy
,
36
(
10
), pp.
6098
6109
. 10.1016/j.energy.2011.08.003
18.
Henchoz
,
S.
,
Buchter
,
F.
,
Favrat
,
D.
,
Morandin
,
M.
, and
Mercangoz
,
M.
,
2012
, “
Thermoeconomic Analysis of a Solar Enhanced Energy Storage Concept Based on Thermodynamic Cycles
,”
Energy
,
45
(
1
), pp.
358
365
. 10.1016/j.energy.2012.02.010
19.
Frate
,
G. F.
,
Antonelli
,
M.
, and
Desideri
,
U.
,
2017
, “
A Novel Pumped Thermal Electricity Storage (PTES) System With Thermal Integration
,”
Appl. Therm. Eng.
,
121
, pp.
1051
1058
. 10.1016/j.applthermaleng.2017.04.127
20.
Pacio
,
J.
,
Singer
,
C.
,
Wetzel
,
T.
, and
Uhlig
,
R.
,
2013
, “
Thermodynamic Evaluation of Liquid Metals as Heat Transfer Fluids in Con-Centrated Solar Power Plants
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
295
302
. 10.1016/j.applthermaleng.2013.07.010
21.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2010
, “Heat Exchangers,” 6th ed.,
Fundamentals of Heat and Mass Transfer
,
John Wiley and Sons Ltd.
,
New York
,
Chap 11.0470881453
.
You do not currently have access to this content.