Abstract

It is reported that a three-dimensional cross-linked macromolecular structure with heterogeneous inorganic and organic compositions widely exists in coal particles. The macromolecules usually represent the rank transition of more than 75% of the carbon (C) content of coal particles. In order to know the coal combustion process better, it is important to specifically study the evolution of the coal macromolecule during combustion. In this paper, the structural evolution and the detailed oxidization reactions of a coal macromolecule during the process of combustion are numerically studied with the reactive force field (ReaxFF) molecular dynamics (MD) method, in which the carbon (C) and hydrogen (H) atoms are fully oxidized to CO2 and H2O, respectively. It is found that the coal macromolecule experiences three main stages sequentially: the cleavage, the ring opening, and the oxidation. The heteroatoms (O, N, and S) inside the coal macromolecule are found to play important roles throughout the whole combustion process. The detailed chemical reactions with their occurrence frequencies show that the chemical reactions with O2 mainly occur in C1–4 fragments, and the C1–2–H–O fragments widely exist in the system before they are finally oxidized to CO or CO2.

References

1.
Song
,
M. L.
,
Wang
,
J. L.
, and
Zhao
,
J. J.
,
2018
, “
Coal Endowment, Resource Curse, and High Coal-Consuming Industries Location: Analysis Based on Large-Scale Data
,”
Resour., Conserv. Recycl.
,
129
, pp.
333
344
. 10.1016/j.resconrec.2016.08.005
2.
Jang
,
D. S.
, and
Acharya
,
S.
,
1991
, “
Moment Closure Model for Nitrogen Oxide Formation in Pulverized Coal Combustion Furnaces
,”
J. Energy Resour. Technol.
,
113
(
2
), pp.
117
121
. 10.1115/1.2905784
3.
Habermehl
,
M.
,
Hees
,
J.
,
Maßmeyer
,
A.
,
Zabrodiec
,
D.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2016
, “
Comparison of Flame Stability Under Air and Oxy-Fuel Conditions for an Aerodynamically Stabilized Pulverized Coal Swirl Flame
,”
J. Energy Resour. Technol.
,
138
(
4)
, p.
042209
. 10.1115/1.4032940
4.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6)
, p.
061602
10.1115/1.4034547.
5.
Wang
,
G.
,
Liu
,
Q.
,
Sun
,
L.
,
Song
,
X.
,
Du
,
W.
,
Yan
,
D.
, and
Wang
,
Y.
,
2018
, “
Secondary Spontaneous Combustion Characteristics of Coal Based on Programed Temperature Experiments
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082204
. 10.1115/1.4039659
6.
Wen
,
X.
,
Luo
,
K.
,
Luo
,
Y. J.
,
Kassem
,
H. I.
,
Jin
,
H. H.
, and
Fan
,
J. R.
,
2016
, “
Large Eddy Simulation of a Semi-Industrial Scale Coal Furnace Using non-Adiabatic Three-Stream Flameletiprogress Variable Model
,”
Appl. Energy
,
183
, pp.
1086
1097
. 10.1016/j.apenergy.2016.09.034
7.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
,
105
(
41
), pp.
9396
9409
. 10.1021/jp004368u
8.
Castro-Marcano
,
F.
,
Kamat
,
A. M.
,
Russo
,
M. F.
,
van Duin
,
A. C. T.
, and
Mathews
,
J. P.
,
2012
, “
Combustion of an Illinois No. 6 Coal Char Simulated Using an Atomistic Char Representation and the ReaxFF Reactive Force Field
,”
Combust. Flame
,
159
(
3
), pp.
1272
1285
. 10.1016/j.combustflame.2011.10.022
9.
Yan
,
G. C.
,
Zhang
,
Z. Q.
, and
Yan
,
K. F.
,
2013
, “
Reactive Molecular Dynamics Simulations of the Initial Stage of Brown Coal Oxidation at High Temperatures
,”
Mol. Phys.
,
111
(
1
), pp.
147
156
. 10.1080/00268976.2012.708443
10.
Bhoi
,
S.
,
Banerjee
,
T.
, and
Mohanty
,
K.
,
2016
, “
Insights on the Combustion and Pyrolysis Behavior of Three Different Ranks of Coals Using Reactive Molecular Dynamics Simulation
,”
RSC Adv.
,
6
(
4
), pp.
2559
2570
. 10.1039/C5RA23181G
11.
Zheng
,
M.
,
Li
,
X. X.
, and
Guo
,
L.
,
2018
, “
Investigation of N Behavior During Coal Pyrolysis and Oxidation Using ReaxFF Molecular Dynamics
,”
Fuel
,
233
, pp.
867
876
. 10.1016/j.fuel.2018.06.133
12.
Zheng
,
M.
,
Li
,
X. X.
, and
Guo
,
L.
,
2013
, “
Algorithms of GPU-Enabled Reactive Force Field (ReaxFF) Molecular Dynamics
,”
J. Mol. Graphics Modell.
,
41
, pp.
1
11
. 10.1016/j.jmgm.2013.02.001
13.
Mathews
,
J. P.
, and
Chaffee
,
A. L.
,
2012
, “
The Molecular Representations of Coal—A Review
,”
Fuel
,
96
(
1
), pp.
1
14
. 10.1016/j.fuel.2011.11.025
14.
Mathews
,
J. P.
,
van Duin
,
A. C. T.
, and
Chaffee
,
A. L.
,
2011
, “
The Utility of Coal Molecular Models
,”
Fuel Process. Technol.
,
92
(
4
), pp.
718
728
. 10.1016/j.fuproc.2010.05.037
15.
Jurkiewicz
,
A.
,
1987
, “
Spatial System of the Wiser Model of Coal Structure According to the 2nd Moment of the Nuclear-Magnetic-Resonance Line
,”
J. Appl. Phys.
,
62
(
9
), pp.
3892
3897
. 10.1063/1.339235
16.
Wiser
,
W. H.
,
1984
, “Conversion of Bituminous Coal to Liquids and Gases: Chemistry and Representative Processes,”
Magnetic Resonance
,
Springer
,
New York
, pp.
325
350
. 10.1007/978-94-009-6378-8_12
17.
Pielsticker
,
S.
,
Goevert
,
B.
,
Kreitzberg
,
T.
,
Habermehl
,
M.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2017
, “
Simultaneous Investigation Into the Yields of 22 Pyrolysis Gases From Coal and Biomass in a Small-Scale Fluidized bed Reactor
,”
Fuel
,
190
, pp.
420
434
. 10.1016/j.fuel.2016.10.085
18.
Li
,
X. X.
,
Mo
,
Z.
,
Liu
,
J.
, and
Guo
,
L.
,
2015
, “
Revealing Chemical Reactions of Coal Pyrolysis With GPU-Enabled ReaxFF Molecular Dynamics and Cheminformatics Analysis
,”
Mol. Simulat.
,
41
(
1–3
), pp.
13
27
. 10.1080/08927022.2014.913789
19.
Jin
,
H.
,
Xu
,
B.
,
Li
,
H.
,
Ku
,
X.
, and
Fan
,
J.
,
2018
, “
Numerical Investigation of Coal Gasification in Supercritical Water With the ReaxFF Molecular Dynamics Method
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
20513
20524
. 10.1016/j.ijhydene.2018.09.163
20.
Li
,
H.
,
Xu
,
B.
,
Jin
,
H.
,
Luo
,
K.
, and
Fan
,
J.
,
2019
, “
Molecular Dynamic Study of a Pyrolysis Process of a Coal Particle in Different Environments
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032202
. 10.1115/1.4044554
21.
Chenoweth
,
K.
,
van Duin
,
A. C. T.
, and
Goddard
,
W. A.
III
,
2008
, “
ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
,”
J. Phys. Chem. A
,
112
(
5
), pp.
1040
1053
. 10.1021/jp709896w
22.
Aktulga
,
H. M.
,
Fogarty
,
J. C.
,
Pandit
,
S. A.
, and
Grama
,
A. Y.
,
2012
, “
Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques
,”
Parallel Comput.
,
38
(
4–5
), pp.
245
259
. 10.1016/j.parco.2011.08.005
23.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
Vangunsteren
,
W. F.
,
Dinola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular-Dynamics with Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), pp.
3684
3690
. 10.1063/1.448118
24.
Zhou
,
Z. J.
,
Guo
,
L. Z.
,
Chen
,
L. P.
,
Shan
,
S. Q.
, and
Wang
,
Z. H.
,
2018
, “
Study of Pyrolysis of Brown Coal and Gasification of Coal-Water Slurry Using the ReaxFF Reactive Force Field
,”
Int. J. Energy Res.
,
42
(
7
), pp.
2465
2480
. 10.1002/er.4029
25.
Liu
,
J.
, and
Guo
,
X.
,
2017
, “
ReaxFF Molecular Dynamics Simulation of Pyrolysis and Combustion of Pyridine
,”
Fuel Process. Technol.
,
161
, pp.
107
115
. 10.1016/j.fuproc.2017.03.016
26.
Salmon
,
E.
,
van Duin
,
A. C. T.
,
Lorant
,
F.
,
Marquaire
,
P. M.
, and
Goddard
,
W. A.
,
2009
, “
Early Maturation Processes in Coal. Part 2: Reactive Dynamics Simulations Using the ReaxFF Reactive Force Field on Morwell Brown Coal Structures
,”
Org. Geochem.
,
40
(
12
), pp.
1195
1209
. 10.1016/j.orggeochem.2009.09.001
27.
Li
,
H.
,
Xu
,
B.
,
Jin
,
H.
,
Luo
,
K.
, and
Fan
,
J.
,
2019
, “
Molecular Dynamics Investigation on the Lignin Gasification in Supercritical Water
,”
Fuel Process. Technol.
,
192
, pp.
203
209
. 10.1016/j.fuproc.2019.04.014
28.
Jin
,
H.
,
Chen
,
B.
,
Zhao
,
X.
, and
Cao
,
C.
,
2018
, “
Molecular Dynamic Simulation of Hydrogen Production by Catalytic Gasification of Key Intermediates of Biomass in Supercritical Water
,”
ASME J. Energy Res. Technol.
,
140
(
4
), p.
041801
. 10.1115/1.4037814
29.
Chatterjee
,
K.
,
Stock
,
L. M.
, and
Zabransky
,
R. F.
,
1989
, “
The Pathways for Thermal-Decomposition of Aryl Alkyl Ethers During Coal Pyrolysis
,”
Fuel
,
68
(
10
), pp.
1349
1353
. 10.1016/0016-2361(89)90255-X
30.
Hodek
,
W.
,
Kirschstein
,
J.
, and
Vanheek
,
K. H.
,
1991
, “
Reactions of Oxygen Containing Structures in Coal Pyrolysis
,”
Fuel
,
70
(
3
), pp.
424
428
. 10.1016/0016-2361(91)90133-U
31.
Grant
,
D. M.
,
Pugmire
,
R. J.
,
Fletcher
,
T. H.
, and
Kerstein
,
A. R.
,
1989
, “
Chemical-Model of Coal Devolatilization Using Percolation Lattice Statistics
,”
Energy Fuel
,
3
(
2
), pp.
175
186
. 10.1021/ef00014a011
32.
Niksa
,
S.
, and
Kerstein
,
A. R.
,
1991
, “
FLASHCHAIN Theory for Rapid Coal Devolatilization Kinetics .1. Formulation
,”
Energy Fuel
,
5
(
5
), pp.
647
665
. 10.1021/ef00029a006
You do not currently have access to this content.