Abstract

In the numerical simulations of thermal recovery for unconventional resources, reservoir models involve complex multicomponent-multiphase flow in non-isothermal conditions, where spatial heterogeneity necessitates the huge number of discretized elements. Proxy modeling approaches have been applied to efficiently approximate solutions of reservoir simulations in such complex problems. In this study, we apply machine learning technologies to the thermal recovery of unconventional resources, for the efficient computation and prediction of hydrocarbon production. We develop data-driven models applying artificial neural network (ANN) to predict hydrocarbon productions under heterogeneous and unknown properties of unconventional reservoirs. We study two different thermal recovery methods—expanding solvent steam-assisted gravity drainage for bitumen and in-situ upgrading of oil shale. We obtain training datasets by running high-fidelity simulation models for these two problems. As training datasets of ANN models, diverse input and output data of phase and component productions are generated, by considering heterogeneity and uncertainty. In the bitumen reservoirs, diverse permeability anisotropies are considered as unknown properties. Similarly, in the oil shale reservoirs, diverse kerogen decomposition kinetics are considered. The performance of data-driven models is evaluated with respect to the position of the test dataset. When the test data is inside of the boundary of training datasets, the developed data-driven models based on ANN reliably predict the cumulative productions at the end of the recovery processes. However, when the test data is at the boundary of training datasets, physical insight plays a significant role to provide a reliable performance of data-driven models.

References

1.
Alhuthali
,
A. H.
,
Datta-Gupta
,
A.
,
Yuen
,
B.
, and
Fontanilla
,
J. P.
,
2010
, “
Optimizing Smart Well Controls Under Geologic Uncertainty
,”
J. Petrol. Sci. Eng.
,
73
(
1–2
), pp.
107
121
. 10.1016/j.petrol.2010.05.012
2.
Ma
,
X.
,
Al-Harbi
,
M.
,
Datta-Gupta
,
A.
, and
Efendiev
,
Y.
,
2008
, “
An Efficient Two-Stage Sampling Method for Uncertainty Quantification in History Matching Geological Models
,”
SPE J.
,
13
(
1
), pp.
77
87
. 10.2118/102476-PA
3.
Xie
,
J.
,
Yang
,
C.
,
Gupta
,
N.
,
King
,
M. J.
, and
Datta-Gupta
,
A.
,
2015
, “
Depth of Investigation and Depletion in Unconventional Reservoirs With Fast-Marching Methods
,”
SPE J.
,
20
(
4
), pp.
831
841
. 10.2118/154532-PA
4.
Yang
,
C.
,
Vyas
,
A.
,
Datta-Gupta
,
A.
,
Ley
,
S. B.
, and
Biswas
,
P.
,
2017
, “
Rapid Multistage Hydraulic Fracture Design and Optimization in Unconventional Reservoirs Using a Novel Fast Marching Method
,”
J. Petrol. Sci. Eng.
,
156
, pp.
91
101
. 10.1016/j.petrol.2017.05.004
5.
Karlsen
,
K. H.
,
Lie
,
K.-A.
, and
Risebro
,
N.
,
2000
, “
A Fast Marching Method for Reservoir Simulation
,”
Comput. Geosci.
,
4
(
2
), pp.
185
206
. 10.1023/A:1011564017218
6.
Jeong
,
H.
,
Sun
,
A. Y.
,
Lee
,
J.
, and
Min
,
B.
,
2018
, “
A Learning-Based Data-Driven Forecast Approach for Predicting Future Reservoir Performance
,”
Adv. Water Resour.
,
118
, pp.
95
109
. 10.1016/j.advwatres.2018.05.015
7.
Nwachukwu
,
A.
,
Jeong
,
H.
,
Pyrcz
,
M.
, and
Lake
,
L. W.
,
2018
, “
Fast Evaluation of Well Placements in Heterogeneous Reservoir Models Using Machine Learning
,”
J. Petrol. Sci. Eng.
,
163
, pp.
463
475
. 10.1016/j.petrol.2018.01.019
8.
Van
,
S. L.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
. 10.1115/1.4038054
9.
Ersahin
,
A.
,
Gul
,
S.
,
Ertekin
,
T.
, and
Temizel
,
C.
,
2019
,
Artificial Neural Network Modeling of Cyclic Steam Injection Process in Naturally Fractured Reservoirs
,
SPE Reservoir Evaluation & Engineering
.
10.
Wang
,
S.
, and
Chen
,
S.
,
2019
, “
Insights to Fracture Stimulation Design in Unconventional Reservoirs Based on Machine Learning Modeling
,”
J. Petrol. Sci. Eng.
,
174
, pp.
682
695
. 10.1016/j.petrol.2018.11.076
11.
Bakay
,
A.
,
Caers
,
J.
,
Mukerji
,
T.
,
Dong
,
Y.
,
Briceno
,
A.
, and
Neumann
,
D.
,
2019
, “
Integrating Geostatistical Modeling With Machine Learning for Production Forecast in Shale Reservoirs: Case Study From Eagle Ford
,”
Unconventional Resources Technology Conference
,
Denver, CO
,
Jul. 22–24
, pp.
4370
4385
.
Unconventional Resources Technology Conference (URTeC), Society of Exploration Geophysicists
.
12.
Sibaweihi
,
N.
,
Patel
,
R.
,
Guevara
,
J.
,
Gates
,
I.
, and
Trivedi
,
J.
,
2019
, “
Real-Time Steam Allocation Workflow Using Machine Learning for Digital Heavy Oil Reservoirs
,”
SPE Western Regional Meeting
,
San Jose, CA
,
Apr. 23–26
.
Society of Petroleum Engineers
.
13.
Chen
,
C.
,
Gao
,
S.
,
Sun
,
Y.
,
Guo
,
W.
, and
Li
,
Q.
,
2017
, “
Research on Underground Dynamic Fluid Pressure Balance in the Process of Oil Shale In-Situ Fracturing-Nitrogen Injection Exploitation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032908
. 10.1115/1.4035748
14.
Lu
,
X.
,
Zhou
,
X.
,
Luo
,
J.
,
Zeng
,
F.
, and
Peng
,
X.
,
2019
, “
Characterization of Foamy Oil and Gas/Oil Two-Phase Flow in Porous Media for a Heavy Oil/Methane System
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032801
. 10.1115/1.4041662
15.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E. M. A.
,
Al-Shehri
,
D.
, and
Patil
,
S.
,
2019
, “
Heavy Oil Recovery Using In Situ Steam Generated by Thermochemicals: A Numerical Simulation Study
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122903
. 10.1115/1.4043862
16.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E.
,
Habib
,
M. A.
, and
Elkatatny
,
S.
,
2019
, “
Well-Placement Optimization in Heavy Oil Reservoirs Using a Novel Method of In Situ Steam Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032906
. 10.1115/1.4041613
17.
Wang
,
K.
,
Li
,
K.
,
Zhou
,
W.
,
Zhu
,
G.
,
Pan
,
Y.
,
Fan
,
H.
,
Gao
,
Y.
,
Tang
,
J.
,
Xu
,
L.
, and
You
,
Q.
,
2020
, “
Quantitative Evaluation on the Evolution of Water Cone Behavior in a Heavy Oil Reservoir With Bottom Water
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063004
. 10.1115/1.4045833
18.
Fedutenko
,
E.
,
Yang
,
C.
,
Card
,
C.
, and
Nghiem
,
L. X.
,
2012
, “
Forecasting SAGD Process Under Geological Uncertainties Using Data-Driven Proxy Model
,”
SPE Heavy Oil Conference Canada
,
Calgary, Alberta, Canada
,
June 12–14
.
Society of Petroleum Engineers
.
19.
Guevara
,
J.
,
Ortega
,
A.
,
Canelón
,
J.
,
Nava
,
E.
, and
Queipo
,
N.
,
2015
, “
Model-Based Adaptive-Predictive Control and Optimization of SAGD Under Uncertainty
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
,
Quito, Ecuador
,
Nov. 18–20
.
Society of Petroleum Engineers
.
20.
Pruess
,
K.
,
Oldenburg
,
C. M.
, and
Moridis
,
G.
,
1999
, “TOUGH2 user's guide version 2 (No. LBNL-43134).”
Lawrence Berkeley National Lab
. (LBNL),
Berkeley, CA
.
21.
Lee
,
K. J.
,
2014
, “
Rigorous Simulation Model of Kerogen Pyrolysis for the in-Situ Upgrading of oil Shales
,”
Doctoral dissertation
,
Texas A&M University
,
College Station, TX
.
22.
Lee
,
K.
,
Moridis
,
G.
, and
Ehlig-Economides
,
C.
,
2014
, “
Oil Shale In-Situ Upgrading by Steam Flowing in Vertical Hydraulic Fractures
,”
SPE Unconventional Resources Conference
,
The Woodlands, TX
,
Apr. 1–3
.
Society of Petroleum Engineers
.
23.
Lee
,
K.
,
Moridis
,
G.
, and
Ehlig-Economides
,
C.
,
2015
, “
A Comprehensive Simulation Model of Kerogen Pyrolysis for the in-Situ Upgrading of Oil Shales
,”
SPE Reservoir Simulation Symposium, Society of Petroleum Engineers
,
Houston, TX
,
Feb. 23–25
.
24.
Lee
,
K. J.
,
Moridis
,
G. J.
, and
Ehlig-Economides
,
C. A.
,
2016
, “
A Comprehensive Simulation Model of Kerogen Pyrolysis for the in-Situ Upgrading of oil Shales
,”
SPE J.
,
21
(
5
), pp.
1612
1630
. 10.2118/173299-PA
25.
Lee
,
K. J.
,
Moridis
,
G. J.
, and
Ehlig-Economides
,
C. A.
,
2016
, “
In Situ Upgrading of oil Shale by Steamfrac in Multistage Transverse Fractured Horizontal Well System
,”
Energy Sources, A
,
38
(
20
), pp.
3034
3041
. 10.1080/15567036.2015.1135209
26.
Lee
,
K. J.
,
2020
, “
Characterization of Kerogen Content and Activation Energy of Decomposition Using Machine Learning Technologies in Combination With Numerical Simulations of Formation Heating
,”
J. Petrol. Sci. Eng.
,
188
, p.
106860
. 10.1016/j.petrol.2019.106860
27.
Hassanzadeh
,
H.
,
Rabiei Faradonbeh
,
M.
, and
Harding
,
T.
,
2017
, “
Numerical Simulation of Solvent and Water Assisted Electrical Heating of oil Sands Including Aquathermolysis and Thermal Cracking Reactions
,”
AIChE J.
,
63
(
9
), pp.
4243
4258
. 10.1002/aic.15774
28.
Braun
,
R. L.
, and
Burnham
,
A. K.
,
1992
, “
PMOD: A Flexible Model of Oil and Gas Generation, Cracking, and Expulsion
,”
Org. Geochem.
,
19
(
1–3
), pp.
161
172
. 10.1016/0146-6380(92)90034-U
29.
Demuth
,
H.
, and
Beale
,
M.
,
1993
, “
Neural Network Toolbox for use With Matlab–User'S Guide Version 3.0
.”
30.
Moré
,
J. J.
,
1978
,
The Levenberg-Marquardt Algorithm: Implementation and Theory
,
Numerical Analysis, Springer
. pp.
105
116
.
31.
Yu
,
H.
, and
Wilamowski
,
B. M.
,
2011
,
Industrial Electronics Handbook
, Vol.
5
,
Taylor & Francis
,
Oxfordshire, UK
, p.
1
.
32.
Vinegar
,
H.
,
2006
, “
Shell’s In-Situ Conversion Process
,”
26th Oil Shale Symposium
,
Golden, CO
,
Oct. 16
, p.
2006
.
33.
Fowler
,
T. D.
, and
Vinegar
,
H. J.
,
2009
, “
Oil Shale ICP-Colorado Field Pilots
,”
SPE Western Regional Meeting
,
San Jose, CA
,
Mar. 24–26
.
Society of Petroleum Engineers
.
34.
Lie
,
K.-A.
,
2014
,
An Introduction to Reservoir Simulation Using MATLAB: User Guide for the Matlab Reservoir Simulation Toolbox (MRST)
,
SINTEF ICT
,
Norway
.
35.
Terry
,
R. E.
,
Rogers
,
J. B.
, and
Craft
,
B. C.
,
2015
,
Applied Petroleum Reservoir Engineering
,
Pearson Education
.
36.
Lake
,
L. W.
,
Johns
,
R.
,
Rossen
,
W. R.
, and
Pope
,
G. A.
,
2014
,
Fundamentals of Enhanced Oil Recovery
, Vol.
1
,
Society of Petroleum Engineers
,
Houston, TX
, p.
1
.
37.
Meyer
,
R. F.
, and
Attanasi
,
E. D.
,
2003
,
Heavy Oil and Natural Bitumen: Strategic Petroleum Resources (USGS Fact Sheet)
, Vol.
1
,
U.S. Dept. of the Interior, U.S. Geological Survey
,
Washington, DC
, p.
1
.
38.
Meyer
,
C. A.
,
McClintock
,
R.
, and
Silvestri
,
G.
,
1993
, “
ASME Steam Tables: Thermodynamic and Transport Properties of Steam: Comprising Tables and Charts for Steam and Water, Calculated Using the 1967 IFC Formulation for Industrial Use
,”
in Conformity With the 1963 International Skeleton Tables, as Adopted by the Sixth International Conference on the Properties of Steam
.
American Society of Mechanical Engineers
.
39.
Riedel
,
L.
,
1954
, “
Liquid Density in the Saturated State. Extension of the Theorem of Corresponding States II
,”
Chem. Ing. Tech
,
26
(
5
), pp.
259
264
. 10.1002/cite.330260504
40.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
2000
,
The Properties of Gases and Liquids
, 5, Vol.
1
,
McGraw-Hill Professional
,
New York
, p.
1
.
41.
Kuo
,
K. K.
,
2005
,
Principles of Combustion
, 2nd ed., Vol.
1
,
John Wiley
,
New Jersey
, p.
1
.
42.
Yaws
,
C. L.
, and
Gabbula
,
C.
,
2003
,
Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds
,
Knovel
.
43.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
. 10.1021/i160057a011
44.
Kay
,
W.
,
1936
, “
Density of Hydrocarbon Gases and Vapors at High Temperature and Pressure
,”
Ind. Eng. Chem
,
28
(
9
), pp.
1014
1019
. 10.1021/ie50321a008
45.
Chang
,
C.-H.
, and
Zhao
,
X.
,
1990
, “
A New Generalized Equation for Predicting Volumes of Compressed Liquids
,”
Fluid Phase Equilib.
,
58
(
3
), pp.
231
238
. 10.1016/0378-3812(90)85134-V
46.
Teja
,
A.
, and
Rice
,
P.
,
1981
, “
Generalized Corresponding States Method for the Viscosities of Liquid Mixtures
,”
Ind. Eng. Chem. Fundam.
,
20
(
1
), pp.
77
81
. 10.1021/i100001a015
47.
Lucas
,
K.
,
1981
, “
Die Druckabhängigkeit der Viskosität von Flüssigkeiten–Eine Einfache Abschätzung
,”
Chem. Ing. Tech.
,
53
(
12
), pp.
959
960
. 10.1002/cite.330531209
48.
Van der Waals
,
J.
,
1890
, “
Arch. Neerlandaises 24 (1891) 1, Trans
,”
Z. Phys. Chem
,
5
, p.
133
.
49.
Tables-Hydrocarbons
,
T. T.
,
1996
,
Thermodynamics Research Center
,
Texas A&M University System
,
College Station, TX
.
50.
Poling
,
B. E.
,
Prausnitz
,
J. M.
,
John Paul
,
O. C.
, and
Reid
,
R. C.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
51.
Chung
,
T. H.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1984
, “
Applications of Kinetic gas Theories and Multiparameter Correlation for Prediction of Dilute gas Viscosity and Thermal Conductivity
,”
Ind. Eng. Chem. Fundam.
,
23
(
1
), pp.
8
13
. 10.1021/i100013a002
52.
Chung
,
T. H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
,
1988
, “
Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
,
27
(
4
), pp.
671
679
. 10.1021/ie00076a024
53.
Van Genuchten
,
M. T.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
,
44
(
5
), pp.
892
898
. 10.2136/sssaj1980.03615995004400050002x
54.
Corey
,
A. T.
,
1954
, “
The Interrelation Between Gas and Oil Relative Permeabilities
,”
Producers Monthly
,
19
(
1
), pp.
38
41
.
55.
Al-Murayri
,
M. T.
,
Maini
,
B. B.
,
Harding
,
T. G.
, and
Oskouei
,
J.
,
2016
, “
Multicomponent Solvent co-Injection With Steam in Heavy and Extra-Heavy oil Reservoirs
,”
Energy Fuels
,
30
(
4
), pp.
2604
2616
. 10.1021/acs.energyfuels.5b02774
56.
Gates
,
I. D.
,
2007
, “
Oil Phase Viscosity Behaviour in Expanding-Solvent Steam-Assisted Gravity Drainage
,”
J. Petrol. Sci. Eng.
,
59
(
1–2
), pp.
123
134
. 10.1016/j.petrol.2007.03.006
57.
Manfre Jaimes
,
D.
,
Gates
,
I. D.
, and
Clarke
,
M.
,
2019
, “
Reducing the Energy and Steam Consumption of SAGD Through Cyclic Solvent Co-Injection
,”
Energies
,
12
(
20
), p.
3860
. 10.3390/en12203860
58.
Kar
,
T.
,
Williamson
,
M.
, and
Hascakir
,
B.
,
2014
, “
The Role of Asphaltenes in Emulsion Formation for Steam Assisted Gravity Drainage (SAGD) and Expanding Solvent-SAGD (ES-SAGD)
,”
SPE Heavy and Extra Heavy Oil Conference: Latin America
,
Medellín, Colombia
,
Sept. 24–26
.
59.
Argüelles-Vivas
,
F. J.
,
Babadagli
,
T.
,
Little
,
L.
,
Romaniuk
,
N.
, and
Ozum
,
B.
,
2012
, “
High Temperature Density, Viscosity, and Interfacial Tension Measurements of Bitumen–Pentane–Biodiesel and Process Water Mixtures
,”
J. Chem. Eng. Data
,
57
(
10
), pp.
2878
2889
. 10.1021/je3008217
60.
Lee
,
K. J.
,
Finsterle
,
S.
, and
Moridis
,
G. J.
,
2018
, “
Analyzing the Impact of Reaction Models on the Production of Hydrocarbons From Thermally Upgraded oil Shales
,”
J. Petrol. Sci. Eng.
,
168
, pp.
448
464
. 10.1016/j.petrol.2018.05.021
61.
Pruess
,
K.
, and
Narasimhan
,
T.
,
1982
, “
A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media
,”
No. LBNL-13487
.
Lawrence Berkeley National Lab. (LBNL)
,
Berkeley, CA
.
62.
Bauman
,
J. H.
, and
Deo
,
M. D.
,
2010
, “
Parameter Space Reduction and Sensitivity Analysis in Complex Thermal Subsurface Production Processes
,”
Energy Fuels
,
25
(
1
), pp.
251
259
. 10.1021/ef101225g
63.
Braun
,
R. L.
, and
Burnham
,
A. K.
,
1990
, “
Mathematical Model of oil Generation, Degradation, and Expulsion
,”
Energy Fuels
,
4
(
2
), pp.
132
146
. 10.1021/ef00020a002
64.
Chen
,
Z.
,
Liu
,
X.
, and
Jiang
,
C.
,
2017
, “
Quick Evaluation of Source Rock Kerogen Kinetics Using Hydrocarbon Pyrograms From Regular Rock-Eval Analysis
,”
Energy Fuels
,
31
(
2
), pp.
1832
1841
. 10.1021/acs.energyfuels.6b01569
You do not currently have access to this content.