Abstract

In this paper, measurements and computations are performed to study the performance of a 45-deg twisted Savonius rotor with a modified profile, at various overlap ratios (δ), aspect ratios (AR), and wind velocity (V). A free air jet test rig is used to carry out the experiments, while three-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations are used, in conjunction with the renormalization group (RNG) k–ɛ turbulence model, to perform the computations. The present experimental results successfully verify the simulation predictions obtained by the selected turbulence model. The RNG k–ɛ turbulence model has been chosen based on previous tests performed and published by the authors. Furthermore, both torque coefficient (CT) and power coefficient (CP) are numerically predicted at various tip speed ratios (λ) for overlap ratios (δ) ranging from 0.0 to 0.5, aspect ratios (AR) ranging from 0.75 to 3, and wind velocity values ranging from 4 to 18 m/s. Unlike the conventional rotor, the present twisted rotor with a modified profile produces significant performance improvement in the case of modified rotor without overlapping (δ = 0.0). Moreover, the peaks of CT and CP of the twisted rotor with the modified profile are enhanced with the increase in the aspect ratio. However, the percentage increase is noticed to be insignificant for AR greater than two. The maximum power coefficient (CPmax) for the twisted rotor with the modified profile and optimized design is 0.305 at a wind velocity of 6 m/s, with a performance gain of 75.3% compared to the conventional Savonius wind rotor which has CPmax=0.174.

References

1.
Savonius
,
S. J.
,
1931
, “
The S-Rotor and Its Applications
,”
Mechanical Eng.
,
53
(
5
), pp.
333
338
.
2.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
. 10.1016/j.rser.2012.02.056
3.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME. J. Energy Resour. Technol.
,
140
(
5
), p.
050801
. 10.1115/1.4038785
4.
Sheldahl
,
R. E.
,
Blackwell
,
B. F.
, and
Feltz
,
L. V.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
. 10.2514/3.47966
5.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renewable Energy
,
105
, pp.
722
734
. 10.1016/j.renene.2016.12.077
6.
Bhayo
,
B. A.
, and
Al-Kayiem
,
H. H.
,
2017
, “
Experimental Characterization and Comparison of Performance Parameters of S-Rotors for Standalone Wind Power System
,”
Energy
,
138
, pp.
752
763
. 10.1016/j.energy.2017.07.128
7.
Alom
,
N.
, and
Saha
,
U. K.
,
November 26, 2018
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME. J. Sol. Energy Eng.
,
141
(
3
), p.
030801
. 10.1115/1.4041848
8.
Zhao
,
Z.
,
Zheng
,
Y.
,
Xu
,
X.
,
Liu
,
W.
, and
Hu
,
G.
,
2009
, “
Research on the Improvement of the Performance of Savonius Rotor Based on Numerical Study
,”
International Conference on Sustainable Power Generation and Supply
,
Nanjing, China
,
Apr. 6–7
, IEEE, pp.
1
6
.
9.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
. 10.1016/0167-6105(92)90380-S
10.
Akwa
,
J. V.
,
da Silva Júnior
,
G. A.
, and
Petry
,
A. P.
,
2012
, “
Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Wind Rotor Using Computational Fluid Dynamics
,”
Renewable Energy
,
38
(
1
), pp.
141
149
. 10.1016/j.renene.2011.07.013
11.
Jian
,
C.
,
Kumbernuss
,
J.
,
Linhua
,
Z.
,
Lin
,
L.
, and
Hongxing
,
Y.
,
December 1, 2011
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine’s Performance
,”
ASME. J. Sol. Energy Eng.
,
134
(
1
), p.
011016
. 10.1115/1.4004980
12.
Ushiyama
,
I.
, and
Nagai
,
H.
,
1988
, “
Optimum Design Configurations and Performance of Savonius Rotors
,”
Wind Eng.
,
12
(
1
), pp.
59
75
.
13.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manage.
,
158
, pp.
36
49
. 10.1016/j.enconman.2017.12.011
14.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8-9
), pp.
1359
1375
. 10.1016/j.jweia.2008.03.005
15.
Mahmoud
,
N. H.
,
El-Haroun
,
A. A.
,
Wahba
,
E.
, and
Nasef
,
M. H.
,
2012
, “
An Experimental Study on Improvement of Savonius Rotor Performance
,”
Alexandria Eng. J.
,
51
(
1
), pp.
19
25
. 10.1016/j.aej.2012.07.003
16.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
. 10.1016/0167-6105(78)90037-5
17.
Saad
,
A. S.
,
Elwardany
,
A.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2019
, “
Performance Optimization of Drag-Type Vertical Axis Wind Turbine Having Twisted Blades
,”
Proceeding of the 18th International Conference on Sustainable Energy Technologies (SET 2019)
,
Kuala Lumpur, Malaysia
,
Aug. 20–22
, Volume
1
, pp.
339
348
.
18.
Emmanuel
,
B.
, and
Jun
,
W.
,
October 18, 2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME. J. Sol. Energy Eng.
,
133
(
4
), p.
044503
. 10.1115/1.4004549
19.
Saad
,
A. S.
,
El-Sharkawy
,
I. I.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2020
, “
Performance Enhancement of Twisted-Bladed Savonius Vertical Axis Wind Turbines
,”
Energy Convers. Manage.
,
209
, p.
112673
. 10.1016/j.enconman.2020.112673
20.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
. 10.1016/j.apenergy.2008.09.019
21.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor
,”
JSME Int. J. Series B Fluids Therm. Eng.
,
48
(
1
), pp.
9
16
. 10.1299/jsmeb.48.9
22.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on Single Stage, Two Stage and Three Stage Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
. 10.1002/er.1399
23.
Gad
,
H. E.
,
El-Hamid
,
A. A.
,
El-Askary
,
W. A.
, and
Nasef
,
M. H.
,
2014
, “
A New Design of Savonius Wind Turbine: Numerical Study
,”
CFD Lett.
,
6
(
4
), pp.
144
158
.
24.
Laws
,
P.
,
Saini
,
J. S.
,
Kumar
,
A.
, and
Mitra
,
S.
,
December 10, 2019
, “
Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study
,”
ASME. J. Energy Resour. Technol.
,
142
(
6
), p.
061303
. 10.1115/1.4045476
25.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
July 18, 2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME. J. Energy Resour. Technol.
,
139
(
6
), p.
061202
. 10.1115/1.4036964
26.
Frikha
,
S.
,
Driss
,
Z.
,
Ayadi
,
E.
,
Masmoudi
,
Z.
, and
Abid
,
M. S.
,
2016
, “
Numerical and Experimental Characterization of Multi-stage Savonius Rotors
,”
Energy
,
114
, pp.
382
404
. 10.1016/j.energy.2016.08.017
27.
Damak
,
A.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2013
, “
Experimental Investigation of Helical Savonius Rotor With a Twist of 180
,”
Renewable Energy
,
52
, pp.
136
142
. 10.1016/j.renene.2012.10.043
28.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
. 10.1016/j.renene.2015.12.012
29.
El-Askary
,
W. A.
,
Saad
,
A. S.
,
AbdelSalam
,
A. M.
, and
Sakr
,
I. M.
,
2018
, “
Investigating the Performance of a Twisted Modified Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
182
, pp.
344
355
. 10.1016/j.jweia.2018.10.009
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
31.
Amiri
,
M.
, and
Anbarsooz
,
M.
,
March 5, 2019
, “
Improving the Energy Conversion Efficiency of a Savonius Rotor Using Automatic Valves
,”
ASME. J. Sol. Energy Eng.
,
141
(
3
), p.
031017
. 10.1115/1.4042828
32.
Saad
,
A.
,
AbdelSalam
,
A.
,
Sakr
,
I.
, and
El-Askary
,
W.
,
2017
, “
Performance Analysis of a Helical Savonius Wind Turbine With Modified Rotor
,”
International Conference on Aerospace Sciences and Aviation Technology
Shebin El-Kom, Egypt
,
Apr. 11–13
, pp.
1
14
.
33.
Fluent
,
2016
,
User's Guide Fluent 16.0. Fluent Incorporated
,
Lebanon
,
NH
.
34.
Alom
,
N.
, and
Saha
,
U. K.
,
January 9, 2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical-Bladed Savonius Rotor
,”
ASME. J. Energy Resour. Technol.
,
141
(
5
), p.
051201
. 10.1115/1.4041735
35.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
May 29, 2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME. J. Energy Resour. Technol.
,
141
(
10
), p.
101201
. 10.1115/1.4043791
You do not currently have access to this content.