Abstract

In the present study, turbulent flow of a Cu-water nanofluid through a porous cavity is investigated using a numerical method. Two rotating cylinders with different temperatures are placed inside the porous enclosure to generate turbulent structures. Forced and natural convective heat transfer mechanisms are compared for different Cu nanoparticle concentrations. The natural convection within the enclosure is resulted from buoyancy forces as an effect of temperature differences among hot and cold cylindrical turbulators. To investigate the effect of the cavity geometry on the natural convection heat, the simulations are done for various Rayleigh number values. Accordingly, Rayleigh number increment provides higher Nusselt number values. However, in turbulent flow regimes, forced convection may weaken the natural convection. It is proven that for lower Reynolds numbers, the Nusselt number reaches higher values because of buoyant-driven convective heat transfer deterioration. Moreover, the angular velocity directions of both cylinders slightly affect the Nusselt number. Besides, the impact of porosity on the heat transfer rate is studied for different Darcy numbers. It is concluded that, for lower Ra numbers, as Darcy number rises, the average Nusselt number through the cavity is slightly boosted. In addition, it is shown that for cases with high Ra and Re values, Cu nanoparticle addition adversely affects the heat transfer process. At Ra = 1011, as Cu nanoparticle increases from 0 to 0.02 and 0.04, the average Nu decreases up to 17.65% and 27.48%, respectively.

References

1.
Nabipour
,
N.
,
Daneshfar
,
R.
,
Rezvanjou
,
O.
,
Mohammadi-Khanaposhtani
,
M.
,
Baghban
,
A.
,
Xiong
,
Q.
,
Li
,
L. K. B.
,
Habibzadeh
,
S.
, and
Doranehgard
,
M. H.
,
2020
, “
Estimating Biofuel Density via a Soft Computing Approach Based on Intermolecular Interactions
,”
Renew. Energy
,
152
, pp.
1086
1098
. 10.1016/j.renene.2020.01.140
2.
Asadi
,
A.
,
Kadijani
,
O. N.
,
Doranehgard
,
M. H.
,
Bozorg
,
M. V.
,
Xiong
,
Q.
,
Shadloo
,
M. S.
, and
Li
,
L. K. B.
,
2019
, “
Numerical Study on the Application of Biodiesel and Bioethanol in a Multiple Injection Diesel Engine
,”
Renew. Energy
,
150
, pp.
1019
1029
. 10.1016/j.renene.2019.11.088
3.
Bemani
,
A.
,
Xiong
,
Q.
,
Baghban
,
A.
,
Habibzadeh
,
S.
,
Mohammadi
,
A. H.
, and
Doranehgard
,
M. H.
,
2019
, “
Modeling of Cetane Number of Biodiesel From Fatty Acid Methyl Ester (FAME) Information Using GA-, PSO-, and HGAPSO-LSSVM Models
,”
Renew. Energy
,
150
. 10.1016/j.renene.2019.12.086
4.
Saffarian
,
M. R.
,
Bahoosh
,
R.
, and
Doranehgard
,
M. H.
,
2019
, “
Entropy Generation in the Intake Pipe of an Internal Combustion Engine
,”
Eur. Phys. J. Plus
,
134
(
9
), p.
476
. 10.1140/epjp/i2019-12831-7
5.
Asadi
,
A.
,
Zhang
,
Y.
,
Mohammadi
,
H.
,
Khorand
,
H.
,
Rui
,
Z.
,
Doranehgard
,
M. H.
, and
Bozorg
,
M. V.
,
2019
, “
Combustion and Emission Characteristics of Biomass Derived Biofuel, Premixed in a Diesel Engine: A CFD Study
,”
Renew. Energy
,
138
, pp.
79
89
. 10.1016/j.renene.2019.01.069
6.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
,
Xiong
,
Q.
, and
Li
,
L. K. B.
,
2019
, “
A Numerical Study on Discrete Combustion of Polydisperse Magnesium Aero-Suspensions
,”
Energy
,
194
, pp.
116872
. 10.1016/j.energy.2019.116872
7.
Bozorg
,
M. V.
,
Bidabadi
,
M.
, and
Bordbar
,
V.
,
2019
, “
Numerical Investigation of Flame Behavior and Quenching Distance in Randomly Distributed Poly-Dispersed Iron Dust Cloud Combustion Within a Narrow Channel
,”
J. Hazard. Mater.
,
367
, pp.
482
491
. 10.1016/j.jhazmat.2019.01.002
8.
Bidabadi
,
M.
,
Bozorg
,
M. V.
,
Bordbar
,
V.
, and
Ahmadi
,
G.
,
2018
, “
Flame Propagation Through Heterogeneous Combustion of Hybrid Aluminum-Boron Poly-Disperse Particle Suspensions in Air
,”
Fuel
,
215
, pp.
714
725
. 10.1016/j.fuel.2017.11.131
9.
Bidabadi
,
M.
,
Bozorg
,
M. V.
, and
Bordbar
,
V.
,
2017
, “
A Three-Dimensional Simulation of Discrete Combustion of Randomly Dispersed Micron-Aluminum Particle Dust Cloud and Applying Genetic Algorithm to Obtain the Flame Front
,”
Energy
,
140
, pp.
804
817
. 10.1016/j.energy.2017.09.027
10.
Kimura
,
T.
,
Takeuchi
,
M.
, and
Miyagawa
,
K.
,
1995
, “
Effects of Inner Rotating Horizontal Cylinder on Heat Transfer in a Differentially Heated Enclosure
,”
Heat Transf. Res.
,
24
(
6
).
11.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
. 10.1115/1.4043654
12.
Okafor
,
I. F.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2019
, “
Asymmetrical Non-Uniform Heat Flux Distributions for Laminar Flow Heat Transfer With Mixed Convection in a Horizontal Circular Tube
,”
Heat Transf. Eng.
,
40
(
1–2
), pp.
109
127
. 10.1080/01457632.2017.1421055
13.
Orfi
,
J.
,
Galanis
,
N.
, and
Nguyen
,
C. T.
,
1993
, “
Laminar Fully Developed Incompressible Flow With Mixed Convection in Inclined Tubes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
3
(
4
), pp.
341
355
. 10.1108/eb017535
14.
Piva
,
S.
,
Barozzi
,
G. S.
, and
Collins
,
M. W.
,
1995
, “
Combined Convection and Wall Conduction Effects in Laminar Pipe Flow: Numerical Predictions and Experimental Validation Under Uniform Wall Heating
,”
Heat Mass Transf.
,
30
(
6
), pp.
401
409
. 10.1007/BF01647444
15.
Huang
,
Z.
,
Li
,
Z.-Y.
,
Yu
,
G.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Numerical Investigations on Fully-Developed Mixed Turbulent Convection in Dimpled Parabolic Trough Receiver Tubes
,”
Appl. Therm. Eng.
,
114
, pp.
1287
1299
. 10.1016/j.applthermaleng.2016.10.012
16.
Li
,
Z.-Y.
,
Huang
,
Z.
, and
Tao
,
W.-Q.
,
2016
, “
Three-Dimensional Numerical Study on Fully-Developed Mixed Laminar Convection in Parabolic Trough Solar Receiver Tube
,”
Energy
,
113
, pp.
1288
1303
. 10.1016/j.energy.2016.07.148
17.
Zhao
,
W.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082003
. 10.1115/1.4039775
18.
Siavashi
,
M.
,
Karimi
,
K.
,
Xiong
,
Q.
, and
Doranehgard
,
M. H.
,
2019
, “
Numerical Analysis of Mixed Convection of Two-Phase Non-Newtonian Nanofluid Flow Inside a Partially Porous Square Enclosure With a Rotating Cylinder
,”
J. Therm. Anal. Calorim.
,
137
(
1
), pp.
267
287
. 10.1007/s10973-018-7945-9
19.
Ghasemi
,
K.
, and
Siavashi
,
M.
,
2017
, “
Lattice Boltzmann Numerical Simulation and Entropy Generation Analysis of Natural Convection of Nanofluid in a Porous Cavity With Different Linear Temperature Distributions on Side Walls
,”
J. Mol. Liq.
,
233
, pp.
415
430
. 10.1016/j.molliq.2017.03.016
20.
Izadi
,
M.
,
Hoghoughi
,
G.
,
Mohebbi
,
R.
, and
Sheremet
,
M.
,
2018
, “
Nanoparticle Migration and Natural Convection Heat Transfer of Cu-Water Nanofluid Inside a Porous Undulant-Wall Enclosure Using LTNE and Two-Phase Model
,”
J. Mol. Liq.
,
261
, pp.
357
372
. 10.1016/j.molliq.2018.04.063
21.
Gholamalipour
,
P.
,
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2019
, “
Eccentricity Effects of Heat Source Inside a Porous Annulus on the Natural Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid
,”
Int. Commun. Heat Mass Transf.
,
109
, pp.
104367
. 10.1016/j.icheatmasstransfer.2019.104367
22.
Saffarian
,
M. R.
,
Moravej
,
M.
, and
Doranehgard
,
M. H.
,
2020
, “
Heat Transfer Enhancement in a Flat Plate Solar Collector With Different Flow Path Shapes Using Nanofluid
,”
Renew. Energy
,
146
, pp.
2316
2329
. 10.1016/j.renene.2019.08.081
23.
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Xiong
,
Q.
,
2020
, “
CFD Study of Heat Transfer and Fluid Flow in a Parabolic Trough Solar Receiver With Internal Annular Porous Structure and Synthetic Oil–Al2O3 Nanofluid
,”
Renew. Energy
,
145
, pp.
2598
2614
. 10.1016/j.renene.2019.08.042
24.
Moravej
,
M.
,
Saffarian
,
M. R.
,
Li
,
L. K. B.
,
Doranehgard
,
M. H.
, and
Xiong
,
Q.
,
2019
, “
Experimental Investigation of Circular Flat-Panel Collector Performance With Spiral Pipes
,”
J. Therm. Anal. Calorim.
,
140
, pp.
1229
1236
. 10.1007/s10973-019-08879-1
25.
Athar
,
K.
,
Doranehgard
,
M. H.
,
Eghbali
,
S.
, and
Dehghanpour
,
H.
,
2019
, “
Measuring Diffusion Coefficients of Gaseous Propane in Heavy Oil at Elevated Temperatures
,”
J. Therm. Anal. Calorim.
,
139
, pp.
2633
2645
. 10.1007/s10973-019-08768-7
26.
Mesbah
,
M.
,
Vatani
,
A.
,
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2019
, “
Parallel Processing of Numerical Simulation of Two-Phase Flow in Fractured Reservoirs Considering the Effect of Natural Flow Barriers Using the Streamline Simulation Method
,”
Int. J. Heat Mass Transf.
,
131
, pp.
574
583
. 10.1016/j.ijheatmasstransfer.2018.11.097
27.
Abedinia
,
O.
,
Zareinejad
,
M.
,
Doranehgard
,
M. H.
,
Fathi
,
G.
, and
Ghadimi
,
N.
,
2019
, “
Optimal Offering and Bidding Strategies of Renewable Energy Based Large Consumer Using a Novel Hybrid Robust-Stochastic Approach
,”
J. Clean. Prod.
,
215
, pp.
878
889
. 10.1016/j.jclepro.2019.01.085
28.
Yaghoubi
,
E.
,
Xiong
,
Q.
,
Doranehgard
,
M. H.
,
Yeganeh
,
M. M.
,
Shahriari
,
G.
, and
Bidabadi
,
M.
,
2018
, “
The Effect of Different Operational Parameters on Hydrogen Rich Syngas Production From Biomass Gasification in a Dual Fluidized Bed Gasifier
,”
Chem. Eng. Process. Intensif.
,
126
, pp.
210
221
. 10.1016/j.cep.2018.03.005
29.
Bidabadi
,
M.
,
Xiong
,
Q.
,
Harati
,
M.
,
Yaghoubi
,
E.
,
Doranehgard
,
M. H.
, and
Rahbari
,
A.
,
2018
, “
Study on the Combustion of Micro Organic Dust Particles in Random Media With Considering Effect of Thermal Resistance and Temperature Difference Between Gas and Particles
,”
Chem. Eng. Process. Intensif.
,
126
, pp.
239
247
. 10.1016/j.cep.2018.03.007
30.
Bidabadi
,
M.
,
Harati
,
M.
,
Xiong
,
Q.
,
Yaghoubi
,
E.
,
Doranehgard
,
M. H.
, and
Aghajannezhad
,
P.
,
2018
, “
Volatization & Combustion of Biomass Particles in Random Media: Mathematical Modeling and Analyze the Effect of Lewis Number
,”
Chem. Eng. Process. Intensif.
,
126
, pp.
232
238
. 10.1016/j.cep.2018.03.006
31.
Xiong
,
Q.
,
Yeganeh
,
M. M.
,
Yaghoubi
,
E.
,
Asadi
,
A.
,
Doranehgard
,
M. H.
, and
Hong
,
K.
,
2018
, “
Parametric Investigation on Biomass Gasification in a Fluidized Bed Gasifier and Conceptual Design of Gasifier
,”
Chem. Eng. Process. Intensif.
,
127
, pp.
271
291
. 10.1016/j.cep.2018.04.003
32.
Oztop
,
H. F.
,
Mobedi
,
M.
,
Abu-Nada
,
E.
, and
Pop
,
I.
,
2012
, “
A Heatline Analysis of Natural Convection in a Square Inclined Enclosure Filled With a CuO Nanofluid Under Non-Uniform Wall Heating Condition
,”
Int. J. Heat Mass Transf.
,
55
(
19–20
), pp.
5076
5086
. 10.1016/j.ijheatmasstransfer.2012.05.007
33.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
. 10.1016/j.ijheatfluidflow.2008.04.009
34.
Xiong
,
Q.
,
Bozorg
,
M. V.
,
Doranehgard
,
M. H.
,
Hong
,
K.
, and
Lorenzini
,
G.
,
2020
, “
A CFD Investigation of the Effect of Non-Newtonian Behavior of Cu–Water Nanofluids on Their Heat Transfer and Flow Friction Characteristics
,”
J. Therm. Anal. Calorim.
,
1
, pp.
1
21
. 10.1007/s10973-019-08757-w
35.
Bozorg
,
M. V.
, and
Siavashi
,
M.
,
2019
, “
Two-Phase Mixed Convection Heat Transfer and Entropy Generation Analysis of a Non-Newtonian Nanofluid Inside a Cavity With Internal Rotating Heater and Cooler
,”
Int. J. Mech. Sci.
,
151
, pp.
842
857
. 10.1016/j.ijmecsci.2018.12.036
36.
Xiong
,
Q.
,
Khosravi
,
A.
,
Nabipour
,
N.
,
Doranehgard
,
M. H.
,
Sabaghmoghadam
,
A.
, and
Ross
,
D.
,
2019
, “
Nanofluid Flow and Heat Transfer Due to Natural Convection in a Semi-Circle/Ellipse Annulus Using Modified Lattice Boltzmann Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
12
), pp.
4746
4763
. 10.1108/hff-03-2019-0273
37.
Ting
,
T. W.
,
Hung
,
Y. M.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
38.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2019
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042003
. 10.1115/1.4042004
39.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2018
, “
Mixed Convection of Nanofluids in a Three Dimensional Cavity With Two Adiabatic Inner Rotating Cylinders
,”
Int. J. Heat Mass Transf.
,
117
, pp.
331
343
. 10.1016/j.ijheatmasstransfer.2017.09.116
40.
Kareem
,
A. K.
, and
Gao
,
S.
,
2018
, “
A Comparison Study of Mixed Convection Heat Transfer of Turbulent Nanofluid Flow in a Three-Dimensional Lid-Driven Enclosure With a Clockwise Versus an Anticlockwise Rotating Cylinder
,”
Int. Commun. Heat Mass Transf.
,
90
, pp.
44
55
. 10.1016/j.icheatmasstransfer.2017.10.016
41.
Hosseinnezhad
,
R.
,
Akbari
,
O. A.
,
Afrouzi
,
H. H.
,
Biglarian
,
M.
,
Koveiti
,
A.
, and
Toghraie
,
D.
,
2018
, “
Numerical Study of Turbulent Nanofluid Heat Transfer in a Tubular Heat Exchanger With Twin Twisted-Tape Inserts
,”
J. Therm. Anal. Calorim.
,
132
(
1
), pp.
741
759
. 10.1007/s10973-017-6900-5
42.
Parsaiemehr
,
M.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
,
Toghraie
,
D.
, and
Sheikhzadeh
,
G.
,
2018
, “
Turbulent Flow and Heat Transfer of Water/Al2O3 Nanofluid Inside a Rectangular Ribbed Channel
,”
Phys. E
,
96
, pp.
73
84
. 10.1016/j.physe.2017.10.012
43.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol{®} VP-1 Nanofluid
,”
Energy Convers. Manag.
,
120
, pp.
449
465
. 10.1016/j.enconman.2016.04.106
44.
Chen
,
X. B.
,
Yu
,
P.
,
Winoto
,
S. H.
, and
Low
,
H. T.
,
2007
, “
Free Convection in a Porous Wavy Cavity Based on the Darcy-Brinkman-Forchheimer Extended Model
,”
Numer. Heat Transf. Part A Appl.
,
52
(
4
), pp.
377
397
. 10.1080/10407780701301595
45.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
. 10.1016/j.ijheatmasstransfer.2011.04.048
46.
Haddad
,
Z.
,
Oztop
,
H. F.
,
Abu-Nada
,
E.
, and
Mataoui
,
A.
,
2012
, “
A Review on Natural Convective Heat Transfer of Nanofluids
,”
Renew. Sustain. Energy Rev.
,
16
(
7
), pp.
5363
5378
. 10.1016/j.rser.2012.04.003
47.
Zhou
,
S.-Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
93123
. 10.1063/1.2890431
48.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manag.
,
52
(
1
), pp.
789
793
. 10.1016/j.enconman.2010.06.072
49.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
50.
Alinia
,
M.
,
Ganji
,
D. D.
, and
Gorji-Bandpy
,
M.
,
2011
, “
Numerical Study of Mixed Convection in an Inclined Two Sided Lid Driven Cavity Filled With Nanofluid Using Two-Phase Mixture Model
,”
Int. Commun. Heat Mass Transf.
,
38
(
10
), pp.
1428
1435
. 10.1016/j.icheatmasstransfer.2011.08.003
51.
Mahian
,
O.
,
Kolsi
,
L.
,
Amani
,
M.
,
Estellé
,
P.
,
Ahmadi
,
G.
,
Kleinstreuer
,
C.
,
Marshall
,
J. S.
,
Taylor
,
R. A.
,
Abu-Nada
,
E.
, and
Rashidi
,
S.
,
2018
, “
Recent Advances in Modeling and Simulation of Nanofluid Flows-Part II: Applications
,”
Phys. Rep.
,
790
, pp.
1
48
. https://doi.org/10.1016/j.physrep.2018.11.004
52.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
53.
Spalding
,
D. B.
,
1972
, “
A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives
,”
Int. J. Numer. Methods Eng.
,
4
(
4
), pp.
551
559
. 10.1002/nme.1620040409
54.
Goodarzi
,
M.
,
Safaei
,
M. R.
,
Vafai
,
K.
,
Ahmadi
,
G.
,
Dahari
,
M.
,
Kazi
,
S. N.
, and
Jomhari
,
N.
,
2014
, “
Investigation of Nanofluid Mixed Convection in a Shallow Cavity Using a Two-Phase Mixture Model
,”
Int. J. Therm. Sci.
,
75
, pp.
204
220
. 10.1016/j.ijthermalsci.2013.08.003
You do not currently have access to this content.