Supercritical CO2 power cycles for fossil energy power generation will likely employ oxy-combustion at very high pressures, possibly exceeding 300 bar. At these high pressures, a direct fired oxy-combustor is more likely to behave like a rocket engine than any type of conventional gas turbine combustor. Issues such as injector design, wall heat transfer, and combustion dynamics may play a challenging role in combustor design. Computational fluid dynamics modeling will not only be useful, but may be a necessity in the combustor design process. To accurately model turbulent reacting flows, combustion submodels appropriate for the conditions of interest as defined by the turbulent time and length scales as well as chemical kinetic time scales are necessary. This paper presents a comparison of various turbulence–chemistry interaction (TCI) modeling approaches on a canonical, single injector, direct-fired sCO2 combustor. Large eddy simulation is used to model the turbulent combustion process with varying levels of injector oxygen concentration while comparing the effect of the combustion submodel on CO emissions and flame shape. While experimental data are not yet available to validate the simulations, the sensitivity of CO production and flame shape can be studied as a function of combustion modeling approach and oxygen concentration in an effort to better understand how to approach combustion modeling at these unique conditions.

References

1.
Rolls-Royce
,
2016
, “
Trent 1000 Infographic
,” Rolls Royce, Indianapolis, IN, accessed Mar. 15, 2019, http://www.rolls-royce.com/site-services/images/trent-1000-infographic.aspx
2.
Shuttle Press Kit
,
1998
, “
Main Propulsion System (MPS)
,” Boeing, NASA and United Space Alliance, Canoga Park, CA, accessed Mar. 19, 2019, www.shuttlepresskit.com/scom/216.pdf
3.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Procedia
,
37
, pp.
1135
1149
.
4.
Allam
,
R. J.
,
Fetvedt
,
J. E.
,
Forrest
,
B. A.
, and
Freed
,
D. A.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fules Without Atmospheric Emissions
,”
ASME
Paper No. GT 2014-26952.
5.
Poinsot
,
T.
, and
Veynante
,
D.
, eds.,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
R.T. Edwards Publisher
, Philadelphia, PA.
6.
Veynante
,
D.
, and
Vervisch
,
L.
,
2002
, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
,
28
(
3
), pp.
193
226
.
7.
Givi
,
P.
,
2006
, “
Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion
,”
AIAA J.
,
44
(
1
), pp.
16
23
.
8.
Strakey
,
P. A.
,
2018
, “
Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power Cycles
,”
Sixth International Supercritcial CO2 Power Cycles Symposium
, Pittsburgh, PA, Mar. 27–29.
9.
Sorusbay
,
C.
,
2016
, “
Spark Ignition Engine Combustion
,” MAK 652E Lecture, Istanbul Technical University, Istanbul, Turkey.
10.
Manikantachari
,
K. R. V.
,
Ladislav
,
V.
,
Martin
,
S.
,
Bobren-Diaz
,
J. O.
, and
Vasu
,
S.
,
2018
, “
Reduced Chemical Kinetic Mechansims for Oxy/Methane Supercritical CO2 Combustor Simulations
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092202
.
11.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
12.
Rozenchan
,
G.
,
Zhu
,
D. I.
,
Law
,
C. K.
, and
Tse
,
S. D.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames Up to 60 atm
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1461
1469
.
13.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
1999
, “
Ignition Delay Times of Ram Accelerator CH4/O2/Diluent Mixtures
,”
J. Propul. Power
,
15
(
1
), pp.
82
91
.
14.
ANSYS
,
2017
, “
ANSYS Fluent: Release 18.2
,” ANSYS, Canonsburg, PA.
15.
Morley
,
C.
,
2019
, “GasEQ,” accessed Mar. 18, 2019, www.gaseq.co.uk
16.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.3.0
,” accessed Mar. 15, 2019, http://www.cantera.org
You do not currently have access to this content.