In this report, the influence of pre-oxidation degree and ventilation flow on the parameters of spontaneous combustion of coal (temperature, gas concentration, and exothermic intensity) was studied in six sets of programed temperature experiments. The experimental results showed that the pre-oxidation exerted a positive effect on the spontaneous combustion parameters of coal in the early stage of coal-oxygen recombination reaction, but exerted an inhibitory effect in the later stage of coal-oxygen oxidation reaction. Air supply rate had a positive correlation with the initial oxidation of coal samples and 90 °C pre-oxidation spontaneous combustion parameters. Air supply rate had negative correlation with 140 °C pre-oxidation of coal samples. Meanwhile, secondary oxidation significantly reduced the characteristic temperature of coal. The critical temperature of each coal sample was 83.7 °C (coal sample 1-Y), 68.3 °C (coal sample 1-L), 69.6 °C (coal sample 1-G), 82.1 °C (Coal sample 2-Y), 70.4 °C (coal sample 2-L), and 70.0 °C (coal sample 2-G), and dry cracking temperature was 142.6 °C (coal sample 1-Y), 134.8 °C (coal sample 1-L), 136.2 °C (coal sample 1-G), 147.2 °C (coal sample 2-Y), 136.5 °C (coal sample 2-L), and 134.4 °C (coal sample 2-G). The curves of the characteristic parameters of primary and secondary oxidized coal showed exponential growth. And the oxidation process can be divided into three stages, the first stage (30 °C ∼ critical temperature), the second stage (critical temperature ∼ dry cracking temperature), and the third stage (over the dry temperature).

References

1.
Wang
,
G.
,
Xie
,
J.
,
Xue
,
S.
, and
Wang
,
H.
,
2015
, “
Laboratory Study on Low-Temperature Coal Spontaneous Combustion in the Air of Reduced Oxygen and Low Methane Concentration
,”
Tehničkivjesnik
,
22
(
5
), pp.
1319
1325
.
2.
Li
,
X. C.
,
1998
,
Comprehensive Work of China Coal Mine Safety
,
China Coal Industry Publishing House
,
Beijing, China
.
3.
Lin
,
Q.
,
Wang
,
S.
,
Liang
,
Y.
,
Song
,
S.
, and
Ren
,
T.
,
2017
, “
Analytical Prediction of Coal Spontaneous Combustion Tendency: Velocity Range With High Possibility of Self-Ignition
,”
Fuel Process. Technol.
,
159
, pp.
38
47
.
4.
Deng
,
J.
,
Xiao
,
Y.
,
Li
,
Q.
,
Lu
,
J.
, and
Wen
,
H.
,
2015
, “
Experimental Studies of Spontaneous Combustion and Anaerobic Cooling of Coal
,”
Fuel
,
157
, pp.
261
269
.
5.
Wang
,
G.
,
Yan
,
G.
,
Zhang
,
X.
,
Du
,
W.
,
Huang
,
Q.
,
Sun
,
L.
, and
Zhang
,
X.
,
2016
, “
Research and Development of Foamed Gel for Controlling the Spontaneous Combustion of Coal in Coal Mine
,”
J. Loss Prev. Process Ind.
,
44
, pp.
474
486
.
6.
Qin
,
B.
,
Sun
,
Q.
,
Wang
,
D.
,
Zhang
,
L.
, and
Qin
,
X.
,
2009
, “
Analysis and Key Control Technologies to Prevent Spontaneous Coal Combustion Occurring at a Fully Mechanized Caving Face With Large Obliquity in Deep Mines
,”
Min. Sci. Technol. (China)
,
19
(
4
), pp.
446
451
.
7.
Ohlemüller
,
P.
,
Busch
,
J. P.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2016
, “
Chemical-Looping Combustion of Hard Coal: Autothermal Operation of a 1 Mwth Pilot Plant
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p. 042203.
8.
Habermehl
,
M.
,
Kneer
,
R.
,
Hees
,
J.
,
Maßmeyer
,
A.
,
Zabrodiec
,
D.
, and
Hatzfeld
,
O.
,
2016
, “
Comparison of Flame Stability Under Air and Oxy-Fuel Conditions for an Aerodynamically Stabilized Pulverized Coal Swirl Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042209
.
9.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
.
10.
Cheng
,
X.
,
Han
,
K.
,
Huang
,
Z.
, and
Wang
,
Z.
,
2016
, “
Ash Fusibility Based on Modes of Occurrence and High-Temperature Behaviors of Mineral Matter in Coals
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022003
.
11.
Yan
,
Y. F.
,
Feng
,
S.
,
Zhang
,
L.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2017
, “
Experimental Research on Catalytic Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032201
.
12.
Rokni
,
E.
,
Chi
,
H. H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Co-Firing Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
13.
Nugroho
,
Y. S.
,
McIntosh
,
A. C.
, and
Gibbs
,
B. M.
,
2000
, “
Low-Temperature Oxidation of Single and Blended Coals
,”
Fuel
,
79
(
15
), pp.
1951
1961
.
14.
Epshtein
,
S. A.
,
Kossovich
,
E. L.
,
Kaminskii
,
V. A.
,
Durov
,
N. M.
, and
Dobryakova
,
N. N.
,
2017
, “
Solid Fossil Fuels Thermal Decomposition Features in Air and Argon
,”
Fuel
,
199
, pp.
145
156
.
15.
Zhong
,
X.
,
Wang
,
D.
, and
Yin
,
X.
,
2010
, “
Test Method of Critical Temperature of Coal Spontaneous Combustion Based on the Temperature Programmed Experiment
,”
J. China Coal Soc.
,
35
(
8
), pp.
128
131
.
16.
Xu
,
Y.
,
Wang
,
L.
,
Tian
,
N.
,
Zhang
,
J.
,
Yu
,
M.
, and
Delichatsios
,
M. A.
,
2017
, “
Spontaneous Combustion Coal Parameters for the Crossing-Point Temperature (CPT) Method in a Temperature–Programmed System (TPS)
,”
Fire Saf. J.
,
91
, pp.
147
154
.
17.
Xu
,
T.
,
Wang
,
D.
,
Xin
,
H.
, and
Qi
,
X.
,
2012
, “
Experimental Study on the Temperature Rising Characteristic of Spontaneous Combustion of Coal
,”
J. Min. Saf. Eng.
,
29
(
4
), pp.
575
580
.
18.
Deng
,
J.
,
Zhao
,
J.
,
Zhang
,
Y.
, and
Geng
,
R.
,
2014
, “
Study on Coal Spontaneous Combustion Characteristic Temperature of Growth Rate Analysis
,”
Procedia Eng.
,
84
, pp.
796
805
.
19.
Chen
,
X.
,
Yi
,
X.
, and
Deng
,
J.
,
2017
, “
Experiment Study of Characteristic Self-Heating Intensity of Coal
,”
J. China Coal Soc.
,
20
(
5
), pp.
406
411
.
20.
Deng
,
J.
,
Zhao
,
J.
,
Zhang
,
Y.
, and
Wang
,
C.
,
2016
, “
Micro-Characteristics of Spontaneous Combustion of Second Oxidation With Different Rank Coals
,”
J. China Coal Soc.
,
41
(
5
), pp.
1164
1172
.
21.
Mahidin
,
Usui
,
H.
,
Ishikawa
,
S.
, and
Hamdani
,
2002
, “
The Evaluation of Spontaneous Combustion Characteristics and Properties of Raw and Upgraded Indonesian Low Rank Coals
,”
Coal Prep.
,
22
(
2
), pp.
81
91
.
22.
Deng
,
J.
,
Li
,
Q.
,
Xiao
,
Y.
, and
Shu
,
C.
,
2017
, “
Experimental Study on the Thermal Properties of Coal During Pyrolysis, Oxidation, and Re-Oxidation
,”
Appl. Therm. Eng.
,
110
, pp.
1137
1152
.
23.
Liang
,
Y.
,
Tian
,
F.
,
Luo
,
H.
, and
Tang
,
H.
,
2015
, “
Characteristics of Coal Re-Oxidation Based on Microstructural and Spectral Observation
,”
Int. J. Min. Sci. Technol.
,
25
(
5
), pp.
749
754
.
24.
Zhang
,
Y.
,
Wu
,
J.
,
Chang
,
L.
,
Wang
,
J.
, and
Li
,
Z.
,
2013
, “
Changes in the Reaction Regime During Low-Temperature Oxidation of Coal in Confined Spaces
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1221
1229
.
25.
Yang
,
Y.
,
Li
,
Z.
,
Gao
,
S.
, and
Liu
,
Z.
,
2011
, “
Measuring Methods of Oxidative Heat Release Rates From Loose Coal
,”
J. China Univ. Min. Technol.
,
40
(
4
), pp.
511
516
.
26.
Carras
,
J. N.
, and
Young
,
B. C.
,
1994
, “
Self-Heating of Coal and Related Materials: Models, Application and Test Methods
,”
Prog. Energy Combust. Sci.
,
20
(
1
), pp.
1
15
.
27.
Yang
,
Y.
,
Li
,
Z.
, and
Pan
,
S.
,
2009
, “
Experimental Study of Measuring Oxidative Heat Release Intensity of Coal at Low Temperature by Hotwire Method
,”
J. China Univ. Min. Technol.
,
19
(
3
), pp.
326
330
.
28.
Xu
,
J.
,
Zhang
,
X.
,
Wen
,
H.
, and
Deng
,
J.
,
2000
, “
Procedure of Reaction Between Coal and Oxygen at Low Temperature and Calculation of Its Heat Emitting Intensity
,”
J. China Univ. Min. Technol.-Chin. Ed.
,
29
(
3
), pp.
253
257
.
29.
Baris
,
K.
,
Kizgut
,
S.
, and
Didari
,
V.
,
2012
, “
Low-Temperature Oxidation of Some Turkish Coals
,”
Fuel
,
93
, pp.
423
432
.
30.
Yang
,
Y.
,
Li
,
Z.
,
Yin
,
W.
, and
Pan
,
S.
,
2007
, “
Infrared Diffuse Reflectance Spectral Signature of Spontaneous Combustion Coal
,”
J. China Coal Soc.
, 32(7), pp. 729–733.
31.
Painter
,
P. C.
,
Snyder
,
R. W.
,
Starsinic
,
M.
,
Coleman
,
M. M.
,
Kuehn
,
D. W.
, and
Davis
,
A.
,
1981
, “
Concerning the Application of FT-IR to the Study of Coal: A Critical Assessment of Band Assignments and the Application of Spectral Analysis Programs
,”
Appl. Spectrosc.
,
35
(
5
), pp.
475
485
.
You do not currently have access to this content.