Mixing of fresh (river) water and salty water (seawater or saline brine) in a controlled environment produces an electrical energy known as salinity gradient energy (SGE). Two main conversion technologies of SGE are membrane-based processes: pressure retarded osmosis (PRO) and reverse electrodialysis (RED). Exergy calculations for a representative river-lake system are investigated using available data in the literature between 2000 and 2008 as a case study. An exergy analysis of an SGE system of sea-river is applied to calculate the maximum potential power for electricity generation. Seawater is taken as reference environment (global dead state) for calculating the exergy of fresh water since the sea is the final reservoir. Aqueous sodium chloride solution model is used to calculate the thermodynamic properties of seawater. This model does not consider seawater as an ideal solution and provides accurate thermodynamics properties of sodium chloride solution. The chemical exergy analysis considers sodium chloride (NaCl) as main salt in the water of this highly saline Lake with concentration of more than 200 g/L. The potential power of this system is between 150 and 329 MW depending on discharge of river and salinity gradient between the Lake and the River based on the exergy results. This result indicates a high potential for constructing power plant for SGE conversion. Semipermeable membranes with lifetime greater than 10 years and power density higher than 5 W/m2 would lead to faster development of this conversion technology.

References

1.
Pattle
,
R. E.
,
1954
, “
Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile
,”
Nature
,
174
, p.
660
.
2.
Gibbs
,
J. W.
,
1873
, “
A Method of Geometrical Representation of Thermodynamic Properties of Substances by Means of Surfaces
,”
Trans. Conn. Acad. Arts Sci.
,
2
, pp.
382
404
.https://www3.nd.edu/~powers/ame.20231/gibbs1873b.pdf
3.
Loeb
,
S.
,
1975
, “
Osmotic Power Plants
,”
Science
,
189
(
4203
), pp.
654
655
.
4.
Loeb
,
S.
,
1976
, “
Production of Energy From Concentrated Brines by Pressure Retarded Osmosis—I: Preliminary Technical and Economic Correlations
,”
J. Membr. Sci.
,
1
, pp.
49
63
.
5.
Pattle
,
R. E.
,
1955
, “
Electricity From Fresh and Salt Water-Without Fuel
,”
Chem. Proc. Eng.
,
35
, pp.
351
354
.
6.
Olsson
,
M.
,
Wick
,
G. L.
, and
Isaacs
,
J. D.
,
1979
, “
Salinity Gradient Power-Utilizing Vapor-Pressure Differences
,”
Science
,
206
(
4417
), pp.
452
454
.
7.
Finley
,
W.
, and
Pscheidt
,
E.
,
2001
, “Hydrocratic Generator,” Wader, LLC, Mission Viejo, CA, U.S. Patent No.
US 6559554 B2
.http://www.google.ch/patents/US6559554
8.
Sussman
,
M. V.
, and
Katchalsky
,
A.
,
1970
, “
Mechanochemical Turbine: A New Power Cycle
,”
Science
,
167
(
3914
), pp.
45
47
.
9.
Lagger
,
G.
,
Jensen
,
H.
,
Josserand
,
J.
, and
Girault
,
H. H.
,
2003
, “
Hydro-Voltaic Cells—Part 1: Concentration Cells
,”
J. Electroanal. Chem.
,
545
, pp.
1
6
.
10.
La Mantia
,
F.
,
Pasta
,
M.
,
Deshazer
,
H. D.
,
Logan
,
B. E.
, and
Cui
,
Y.
,
2011
, “
Batteries for Efficient Energy Extraction From a Water Salinity Difference
,”
Nano Lett.
,
11
(
4
), pp.
1810
1813
.
11.
Brogioli
,
D.
,
2009
, “
Extracting Renewable Energy From a Salinity Difference Using a Capacitor
,”
Phys. Rev. Lett.
,
103
(
5
), p.
058501
.
12.
Sales
,
B. B.
,
Saakes
,
M.
,
Post
,
J. W.
,
Buisman
,
C. J. N.
,
Biesheuvel
,
P. M.
, and
Hamelers
,
H. V. M.
,
2010
, “
Direct Power Production From a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell
,”
Environ. Sci. Technol.
,
44
(
14
), pp.
5661
5665
.
13.
Iglesias
,
G. R.
,
Ahualli
,
S.
,
Fernandez
,
M. M.
,
Jimenez
,
M. L.
, and
Delgado
,
A. V.
,
2016
, “
Stacking of Capacitive Cells for Electrical Energy Production by Salinity Exchange
,”
J. Power Sources
,
318
, pp.
283
290
.
14.
Kim
,
D.-K.
,
Duan
,
C.
,
Chen
,
Y.-F.
, and
Majumdar
,
A.
,
2010
, “
Power Generation From Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels
,”
Microfluid. Nanofluid.
,
9
(
6
), pp.
1215
1224
.
15.
Guo
,
W.
,
Cao
,
L.
,
Xia
,
J.
,
Nie
,
F.-Q.
,
Ma
,
W.
,
Xue
,
J.
,
Song
,
Y.
,
Zhu
,
D.
,
Wang
,
Y.
, and
Jiang
,
L.
,
2010
, “
Energy Harvesting With Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source
,”
Adv. Funct. Mater.
,
20
(
8
), pp.
1339
1344
.
16.
Loeb
,
S.
,
1998
, “
Energy Production at the Dead Sea by Pressure-Retarded Osmosis: Challenge or Chimera?
,”
Desalination
,
120
(
3
), pp.
247
262
.
17.
Loeb
,
S.
,
2002
, “
Large-Scale Power Production by Pressure-Retarded Osmosis, Using River Water and Sea Water Passing Through Spiral Modules
,”
Desalination
,
143
(
2
), pp.
115
122
.
18.
Skilhagen
,
S. E.
,
Dugstad
,
J. E.
, and
Aaberg
,
R. J.
,
2008
, “
Osmotic Power—Power Production Based on the Osmotic Pressure Difference Between Waters With Varying Salt Gradients
,”
Desalination
,
220
(
1–3
), pp.
476
482
.
19.
Wang
,
X.
,
Huang
,
Z. H.
,
Li
,
L.
,
Huang
,
S.
,
Yu
,
E. H.
, and
Scott
,
K.
,
2012
, “
Energy Generation From Osmotic Pressure Difference Between the Low and High Salinity Water by Pressure Retarded Osmosis
,”
J. Technol. Innovations Renewable Energy
,
1
(
2
), pp.
122
130
.http://www.lifescienceglobal.com/pms/index.php/jtire/article/view/647
20.
Hong
,
J. G.
, and
Chen
,
Y.
,
2014
, “
Nanocomposite Reverse Electrodialysis (RED) Ion-Exchange Membranes for Salinity Gradient Power Generation
,”
J. Membr. Sci.
,
460
, pp.
139
147
.
21.
Amaral
,
S.
,
Franklin
,
N.
,
Jurkowski
,
M.
, and
Zenouzi
,
M.
,
2014
, “Salinity Gradient Power Experiment Using Reverse Electrodialysis,”
ASME
Paper No. IMECE2014-40248.
22.
Post
,
J. W.
,
Goeting
,
C. H.
,
Valk
,
J.
,
Goinga
,
S.
,
Veerman
,
J.
, and
Hack
,
P. J. F. M.
,
2010
, “
Towards Implementation of Reverse Electrodialysis for Power Generation From Salinity Gradients
,”
Desalination Water Treat.
,
16
(
1–3
), pp.
182
193
.
23.
Ramon
,
G. Z.
,
Feinberg
,
B. J.
, and
Hoek
,
E. M. V.
,
2011
, “
Membrane-Based Production of Salinity-Gradient Power
,”
Energy Environ. Sci.
,
4
(
11
), pp.
4423
4434
.
24.
Emdadi
,
A.
,
Gikas
,
P.
,
Farazaki
,
M.
, and
Emami
,
Y.
,
2016
, “
Salinity Gradient Energy Potential at the Hyper Saline Urmia Lake—ZarrinehRud River System in Iran
,”
Renewable Energy
,
86
, pp.
154
162
.
25.
Nijmeijer
,
K.
, and
Metz
,
S.
,
2010
, “
Chapter 5 Salinity Gradient Energy
,”
Sustainability Science and Engineering
,
C. E.
Isabel
and
I. S.
Andrea
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
95
139
.
26.
Post
,
J. W.
,
Hamelers
,
H. V. M.
, and
Buisman
,
C. J. N.
,
2008
, “
Energy Recovery From Controlled Mixing Salt and Fresh Water With a Reverse Electrodialysis System
,”
Environ. Sci. Technol.
,
42
(
15
), pp.
5785
5790.
27.
She
,
Q.
,
Hou
,
D.
,
Liu
,
J.
,
Tan
,
K. H.
, and
Tang
,
C. Y.
,
2013
, “
Effect of Feed Spacer Induced Membrane Deformation on the Performance of Pressure Retarded Osmosis (PRO): Implications for PRO Process Operation
,”
J. Membr. Sci.
,
445
, pp.
170
182
.
28.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2014
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011201
.
29.
Romero-Ternero
,
V.
,
García-Rodríguez
,
L.
, and
Gómez-Camacho
,
C.
,
2005
, “
Exergy Analysis of a Seawater Reverse Osmosis Plant
,”
Desalination
,
175
(
2
), pp.
197
207
.
30.
Kahraman
,
N.
, and
Cengel
,
Y. A.
,
2005
, “
Exergy Analysis of a MSF Distillation Plant
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2625
2636
.
31.
Uche
,
J.
,
Serra
,
L.
, and
Valero
,
A.
,
2005
, “
Exergy Costs and Inefficiency Diagnosis of a Dual-Purpose Power and Desalination Plant
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
186
193
.
32.
Gaggioli
,
R. A.
,
El-Sayed
,
Y. M.
,
El-Nashar
,
A. M.
, and
Kamaluddin
,
B.
,
1988
, “
Second Law Efficiency and Costing Analysis of a Combined Power and Desalination Plant
,”
ASME J. Energy Resour. Technol.
,
110
(
2
), pp.
114
118
.
33.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256
.
34.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Equilibrium Model and Exergy Analysis of a Biomass Gasifier
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
031801
.
35.
Emdadi
,
A.
,
Zenouzi
,
M.
, and
Kowalski
,
G. J.
,
2016
, “Determining the Potential of Salinity Gradient Energy Source Using an Exergy Source Using an Exergy Analysis,”
ASME
Paper No. ES2016-59532.
36.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Margaret
,
B. B.
,
2011
,
Fundamental of Engineering Thermodynamics
,
Wiley
, Hoboken, NJ.
37.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “Formulation of Seawater Flow Exergy Using Accurate Thermodynamic Data,”
ASME
Paper No. IMECE2010-40915.
38.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalination Water Treat.
,
16
(
1–3
), pp.
354
380
.
39.
Culkin
,
F.
, and
Ridout
,
P. S.
,
1998
, “
Stability of IAPSO Standard Seawater
,”
J. Atmos. Oceanic Technol.
,
15
(
4
), pp.
1072
1075
.
40.
IAPWS,
2008
, “
Release on the IAPWS Formulation for the Thermodynamic Properties of Seawater
,”
International Association for the Properties of Water and Steam
,
Berlin
, accessed Jan. 27, 2018, http://www.iapws.org/relguide/Seawater.html
41.
Cerci
,
Y.
,
Cengel
,
Y.
,
Wood
,
B.
,
Kahraman
,
N.
, and
Karakas
,
E. S.
,
2003
, “
Improving the Thermodynamic and Economic Efficiencies of Desalination Plants: Minimum Work Required for Desalination and Case Studies of Four Working Plants
,” U.S. Department of the Interior, Bureau of Reclamation, Denver, CO, Report No.
78
.https://www.usbr.gov/research/dwpr/reportpdfs/report078.pdf
42.
Pitzer
,
K. S.
,
Peiper
,
J. C.
, and
Busey
,
R. H.
,
1984
, “
Thermodynamic Properties of Aqueous Sodium Chloride Solutions
,”
J. Phys. Chem. Ref. Data
,
13
(
1
), pp.
1
102
.
43.
IAPWS
,
1996
, “Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,”
International Association for the Properties of Water and Steam
,
Berlin
, accessed Jan. 27, 2018, http://www.iapws.org/relguide/IAPWS-95.html
44.
Emdadi
,
A.
,
Emami
,
Y.
,
Zenouzi
,
M.
,
Lak
,
A.
,
Panahirad
,
B.
,
Lotfi
,
A.
,
Lak
,
F.
, and
Kowalski
,
G. J.
,
2014
, “Potential of Electricity Generation by the Salinity Gradient Energy Conversion Technologies in the System of Urmia Lake-GadarChay River,”
ASME
Paper No. ES2014-6310.
45.
Delju
,
A. H.
,
Ceylan
,
A.
,
Piguet
,
E.
, and
Rebetez
,
M.
,
2013
, “
Observed Climate Variability and Change in Urmia Lake Basin, Iran
,”
Theor. Appl. Climatol.
,
111
(
1–2
), pp.
285
296
.
46.
Clarke
,
E. C. W.
, and
Glew
,
D. N.
,
1985
, “
Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride From Equilibrium and Calorimetric Measurements Below 154
 °C,”
J. Phys. Chem. Ref. Data
,
14
(
2
), pp.
489
610
.
You do not currently have access to this content.