The technology for use of biodiesels (up to 20%) as alternative fuel in diesel engines has already been established. In this regard, some suitable modification of biodiesel with appropriate additives may help in increasing the biodiesel component in the biodiesel fuel blends. In order to evaluate the effects of iron nanoparticles (INP) blended palm biodiesel (PB) on the performance and emission characteristics of diesel engine, an experimental investigation is carried out in a single cylinder diesel engine. Methodically, biodiesel prepared from palm oil and commercially available nanosized INP is used in this study. Iron nanoparticles are suspended in the biodiesel in proportions of 40 ppm to 120 ppm using an ultrasonicator. The intact study is conducted in the diesel engine using the four fuel samples, namely diesel, PB20, INP50PB30, and INP75PB30, consecutively. The addition of nano-additive has resulted in higher brake thermal efficiency (BTE) by 3% and break-specific energy consumption (BSEC) by 3.3%, compared to diesel fuel. The emission levels of carbon monoxide (∼56%) and NOx (∼4%) are appreciably reduced with the addition of INP. Increase of INP in the blend from 50 ppm to 75 ppm, BTE and BSEC tend to reduce, but CO and NOx emissions are reduced.

References

1.
Kannan
,
M.
,
Saravanan
,
C. G.
, and
Yadav
,
S. R. P.
,
2016
, “
Experimental Investigation of Compression Ignition Engine Fuelled by a Catalytic Fuel Reformer
,”
Int. J. Ambient Energy
,
37
(
4
), pp.
354
362
.
2.
Kureti
,
S.
,
Weisweiler
,
W.
, and
Hizbullah
,
K.
,
2003
, “
Simultaneous Conversion of Nitrogen Oxides and Soot Into Nitrogen and Carbon Dioxide Over Iron Containing Oxide Catalysts in Diesel Exhaust Gas
,”
Appl. Catal.
, B,
43
(
3
), pp.
281
291
.
3.
Kannan
,
G. R.
,
Karvembu
,
R.
, and
Anand
,
R.
,
2011
, “
Effect of Metal Based Additive on Performance Emission and Combustion Characteristics of Diesel Engine Fuelled With Biodiesel
,”
Appl. Energy
,
88
(
11
), pp.
3694
3703
.
4.
Zhu
,
M.
,
Ma
,
Y.
, and
Zhang
,
D.
,
2011
, “
An Experimental Study of the Effect of a Homogeneous Combustion Catalyst on Fuel Consumption and Smoke Emission in a Diesel Engine
,”
Energy
,
36
(
10
), pp.
6004
6009
.
5.
Ma
,
Y.
,
Zhu
,
M.
, and
Zhang
,
D.
,
2013
, “
The Effect of a Homogeneous Combustion Catalyst on Exhaust Emissions From a Single Cylinder Diesel Engine
,”
Appl. Energy
,
102
, pp.
556
562
.
6.
Zhu
,
M.
,
Ma
,
Y.
, and
Zhang
,
D.
,
2012
, “
Effect of a Homogeneous Combustion Catalyst on the Combustion Characteristics and Fuel Efficiency in a Diesel Engine
,”
Appl. Energy
,
91
(
1
), pp.
166
172
.
7.
Guru
,
M.
,
Koca
,
A.
,
Can
,
O.
,
Cinar
,
C.
, and
Sahin
,
F.
,
2010
, “
Biodiesel Production From Waste Chicken Fat Based Sources and Evaluation With Mg Based Additive in a Diesel Engine
,”
Renewable Energy
,
35
(
3
), pp.
637
643
.
8.
Kelso
,
D.
,
Epperly
,
W. R.
, and
Hart
,
M. L.
,
1990
, “
Effects of Platinum Fuel Additive on Diesel Emissions and Efficiency
,”
SAE
Paper No. 901492.
9.
Burtscher
,
H.
,
Matter
,
U.
, and
Skillas
,
G.
,
1999
, “
The Effect of Fuel Additives on Diesel Engine Particulate Emissions
,”
J. Aerosol Sci.
,
30
(Supplement 1), pp.
S851
S852
.
10.
Keskin
,
A.
,
Guru
,
M.
, and
Altiparmak
,
D.
,
2007
, “
Biodiesel Production From Tall Oil With Synthesized Mn and Ni Based Additives: Effects of the Additives on Fuel Consumption and Emissions
,”
Fuel
,
86
(7–8), pp.
1139
1143
.
11.
May
,
W. R.
, and
Hirs
,
E. A.
,
2005
, “
Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines
,”
11th Diesel Engine Emissions Reduction Conference
(
DEER
), Chicago, IL, Aug. 21–25, pp.
1
16
.
12.
Okuda
,
T.
,
Schauer
,
J. J.
,
Olson
,
M. R.
,
Shafer
,
M. M.
,
Rutter
,
A. P.
,
Walz
,
K. A.
, and
Morschauser
,
P. A.
,
2009
, “
Effects of a Platinum–Cerium Bimetallic Fuel Additive on the Chemical Composition of Diesel Engine Exhaust Particles
,”
Energy Fuels
,
23
(
10
), pp.
4974
4980
.
13.
Sarvestany
,
N. S.
,
Farzad
,
A.
,
Bajestan
,
E. E.
, and
Mir
,
M.
,
2014
, “
Effects of Magnetic Nanofluid Fuel Combustion on the Performance and Emission Characteristics
,”
J. Dispersion Sci. Technol.
,
35
(
12
), pp.
1745
1750
.
14.
Vairamuthu
,
G.
,
Sundarapandian
,
S.
,
Kailasanathan
,
C.
, and
Thangagiri
,
B.
,
2015
, “
Experimental Investigation on the Effects of Cerium Oxide Nanoparticle on Calophyllum Inophyllum (Punnai) Biodiesel Blended With Diesel Fuel in DI Diesel Engine Modified by Nozzle Geometry
,”
J. Energy Inst.
,
89
(4), pp.
668
682
.
15.
Mei
,
D.
,
Li
,
X.
,
Wu
,
Q.
, and
Sun
,
P.
,
2015
, “
Role of Cerium Oxide Nanoparticles as Diesel Additives in Combustion Efficiency Improvements and Emission Reduction
,”
J. Energy Eng.
,
42
(4), pp.
1
6
.
16.
Venkatesan
,
S. P.
, and
Kadiresh
,
P. N.
,
2016
, “
Influence of an Aqueous Cerium Oxide Nanofluid Fuel Additive on Performance and Emission Characteristics of a Compression Ignition Engine
,”
Int. J. Ambient Energy
,
37
(
1
), pp.
64
67
.
17.
Sathiyamoorthi
,
R.
,
Puviyarasan
,
M.
,
Bhuvanesh
,
B. K.
, and
Joshua
,
D. B.
,
2016
, “
Effect of CeO2 Nano Additive on Performance and Emission Characteristics of Diesel Engine Fuelled by Neem Oil-Biodiesel
,”
Int. J. Chem. Sci.
,
14
, pp.
473
484
.
18.
Jung
,
H.
,
Kittelson
,
D. B.
, and
Zachariah
,
M. R.
,
2005
, “
The Influence of a Cerium Additive on Ultrafine Diesel Particle Emissions and Kinetics of Oxidation
,”
Combust. Flame
,
142
(
3
), pp.
276
288
.
19.
Prabu
,
A.
, and
Anand
,
R. B.
,
2015
, “
Emission Control Strategy by Adding Alumina and Cerium Oxide Nano Particle in Biodiesel
,”
J. Energy Inst.
,
89
(3), pp.
366
372
.
20.
Shaafi
,
T.
, and
Velraj
,
R.
,
2015
, “
Influence of Alumina Nanoparticles, Ethanol and Isopropanol Blend as Additive With Diesel-Soybean Biodiesel Blend Fuel: Combustion, Engine Performance and Emissions
,”
Renewable Energy
,
80
, pp.
655
663
.
21.
Anbarasu
,
A.
,
Karthikeyan
,
A.
, and
Balaji
,
M.
,
2016
, “
Performance and Emission Characteristics of Diesel Engine Using Alumina Nanoparticle Blended Biodiesel Emulsion Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(2), p.
022203
.
22.
Aalam
,
C. S.
, and
Saravanan
,
C. G.
,
2015
, “
Effects of Nano Metal Oxide Blended Mahua Biodiesel on CRDI Diesel Engine
,”
Ain Shams Eng. J.
, epub.
23.
Aalam
,
C. S.
,
Saravanan
,
C. G.
, and
Kannan
,
M.
,
2015
, “
Experimental Investigations on a CRDI System Assisted Diesel Engine Fuelled With Aluminium Oxide Nanoparticles Blended Biodiesel
,”
Alexandria Eng. J.
,
54
(
3
), pp.
351
358
.
24.
Rao
,
M. S.
, and
Anand
,
R. B.
,
2016
, “
Performance and Emission Characteristics Improvement Studies on a Biodiesel Fuelled DICI Engine Using Water and AlO(OH) Nanoparticles
,”
Appl. Therm. Eng.
,
98
, pp.
636
645
.
25.
Kao
,
M. J.
,
Ting
,
C. C.
,
Lin
,
B. F.
, and
Tsung
,
T. T.
,
2008
, “
Aqueous Aluminium Nanofluid Combustion in Diesel Fuel
,”
J. Test. Eval.
,
36
(2), pp.
1
5
.
26.
Karthikeyan
,
S.
,
Elango
,
A.
, and
Prathima
,
A.
,
2013
, “
Diesel Engine Performance and Emission Analysis Using Canola oil Methyl Ester With the Nano Sized Zinc Oxide Particles
,”
J. Sci. Ind. Res.
,
21
(1), pp.
83
87
.
27.
Javed
,
S.
,
Murthy
,
Y. V. V. S.
,
Baig
,
R. U.
, and
Rao
,
T. N.
,
2016
, “
Vibration Analysis of a Diesel Engine Using Biodiesel Fuel Blended With Nano Particles by Dual Fueling of Hydrogen
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
217
230
.
28.
Fangsuwannarak
,
K.
, and
Triratanasirichai
,
K.
,
2013
, “
Improvements of Palm Biodiesel Properties by Using Nano-TiO2 additive, Exhaust Emission and Engine Performance
,”
Rom. Rev. Precis. Mech. Opt. Mechatron
,
43
, pp.
111
118
.
29.
Beloni
,
E.
,
Hoffmann
,
V. K.
, and
Dreizin
,
E. L.
,
2008
, “
Combustion of Decane-Based Slurries With Metallic Fuel Additives
,”
J. Propul. Power
,
24
(
6
), pp.
1403
1411
.
30.
Gan
,
Y.
, and
Qiao
,
L.
,
2011
, “
Combustion Characteristics of Fuel Droplets With Addition of Nano and Micron-Sized Aluminum Particles
,”
Combust. Flame
,
158
(
2
), pp.
354
368
.
31.
Jones
,
M.
,
Li
,
C. H.
,
Afjeh
,
A.
, and
Peterson
,
G.
,
2011
, “
Experimental Study of Combustion Characteristics of Nanoscale Metal and Metal Oxide Additives in Biofuel (Ethanol)
,”
Nanoscale Res. Lett.
,
6
, p. 246.
32.
Gan
,
Y.
,
Lim
,
Y. S.
, and
Qiao
,
L.
,
2012
, “
Combustion of Nanofluid Fuels With the Addition of Boron and Iron Particles at Dilute and Dense Concentrations
,”
Combust. Flame
,
159
(
4
), pp.
1732
1740
.
33.
Jeng
,
H. A.
, and
Swanson
,
J.
,
2006
, “
Toxicity of Metal Oxide Nanoparticles in Mammalian Cells
,”
J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng.
,
41
(
12
), pp.
2699
2711
.
34.
Karlsson
,
H. L.
,
Gustafsson
,
J.
,
Cronholm
,
P.
, and
Möller
,
L.
,
2009
, “
Size-Dependent Toxicity of Metal Oxide Particles—A Comparison Between Nano- and Micrometer Size
,”
Toxicol. Lett.
,
188
(
2
), pp.
112
118
.
35.
Cassee
,
F. R.
,
Van Balen
,
E. C.
,
Singh
,
C.
,
Green
,
D.
,
Muijser
,
H.
,
Weinstein
,
J.
, and
Dreher
,
K.
,
2011
, “
Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated With Its Use as a Fuel Additive
,”
Crit. Rev. Toxicol.
,
41
(
3
), pp.
213
229
.
36.
Dey
,
A. R.
, and
Misra
,
R. D.
,
2016
, “
Effect of Infiltration of Bio-Lubricant on the Performance of a Compression Ignition Engine Fuelled With Biodiesel Blends
,”
Clean Technol. Environ. Policy
,
19
(2), pp.
553
563
.
37.
Jena
,
J.
, and
Misra
,
R. D.
,
2014
, “
Effect of Fuel Oxygen on the Energetic and Exergetic Efficiency of a Compression Ignition Engine Fuelled Separately With Palm and Karanja Biodiesels
,”
Energy
,
68
, pp.
411
419
.
38.
Demirbas
,
A.
, and
Karslioglu
,
S.
,
2007
, “
Biodiesel Production Facilities From Vegetable Oils and Animal Fats
,”
Energy Sources
,
29
(
2
), pp.
133
141
.
39.
Misra
,
R. D.
, and
Murthy
,
M. S.
,
2011
, “
Performance, Emission and Combustion Evaluation of Soapnut Oil–Diesel Blends in a Compression Ignition Engine
,”
Fuel
,
90
(
7
), pp.
2514
2518
.
You do not currently have access to this content.