Modeling pressurized entrained flow gasification of solid fuels plays an important role in the development of integrated gasification combined cycle (IGCC) power plants and other gasification applications. A better understanding of the underlying reaction kinetics is essential for the design and optimization of entrained flow gasifiers—in particular at operating conditions relevant to large-scale industrial gasifiers. The presented computational fluid dynamics (CFD) simulations aim to predict conversion rates as well as product gas compositions in entrained flow gasifiers. The simulations are based on the software ansys fluent 15.0 and include several detailed submodels in user defined functions (UDF). In a previous publication, the developed CFD model has been validated for a Rhenish lignite against experimental data, obtained from a pilot-scale entrained flow gasifier operated at the Technische Universität München. In the presented work, the validated CFD model is applied to a Siemens test gasifier geometry. Simulation results and characteristic parameters, with focus on char gasification reactions, are analyzed in detail and provide new insights into the gasification process.

References

1.
Morehead
,
H.
,
2014
, “
Siemens Gasification Technology: Improving Plant Economics Through Performance
,”
Gasification Technology Conference
, Washington, DC, Oct. 26–29.
2.
Laurendeau
,
N. M.
,
1978
, “
Heterogeneous Kinetics of Coal Char Gasification and Combustion
,”
Prog. Energy Combust. Sci.
,
4
(
4
), pp.
221
270
.
3.
Hla
,
S. S.
,
Harris
,
D. J.
, and
Roberts
,
D. G.
,
2006
, “
CFD Modelling for an Entrained Flow Gasification Reactor Using Measured Intrinsic Kinetic Data
,”
Fifth International Conference on CFD in the Process Industries
, Melbourne, Australia, Dec. 11–13.
4.
Vascellari
,
M.
,
Arora
,
R.
, and
Hasse
,
C.
,
2014
, “
Simulation of Entrained Flow Gasification With Advanced Coal Conversion Submodels. Part 2: Char Conversion
,”
Fuel
,
118
, pp.
369
384
.
5.
Vascellari
,
M.
,
Roberts
,
D. G.
,
Hla
,
S. S.
,
Harris
,
D. J.
, and
Hasse
,
C.
,
2015
, “
From Laboratory-Scale Experiments to Industrial-Scale CFD Simulations of Entrained Flow Coal Gasification
,”
Fuel
,
152
, pp.
58
73
.
6.
Halama
,
S.
,
2015
, “
Numerical Simulation of Entrained Flow Gasification: Reaction Kinetics and Char Structure Evolution
,”
Fuel Process. Technol.
,
138
, pp.
314
324
.
7.
Chen
,
C.
,
Horio
,
M.
, and
Kojima
,
T.
,
2000
, “
Numerical Simulation of Entrained Flow Coal Gasifiers. Part I: Modeling of Coal Gasification in an Entrained Flow Gasifier
,”
Chem. Eng. Sci.
,
55
(
18
), pp.
3861
3874
.
8.
Chen
,
C.
,
Horio
,
M.
, and
Kojima
,
T.
,
2000
, “
Numerical Simulation of Entrained Flow Coal Gasifiers. Part II: Effects of Operating Conditions on Gasifier Performance
,”
Chem. Eng. Sci.
,
55
(
18
), pp.
3875
3883
.
9.
Choi
,
Y. C.
,
Li
,
X. Y.
,
Park
,
T. J.
,
Kim
,
J. H.
, and
Lee
,
J. G.
,
2001
, “
Numerical Study on the Coal Gasification Characteristics in an Entrained Flow Gasifier
,”
Fuel
,
80
(
15
), pp.
2193
2201
.
10.
Bockelie
,
M. J.
,
Denison
,
M. K.
,
Chen
,
Z.
,
Linjewile
,
T.
,
Senior
,
C. L.
,
Sarofim
,
A. F.
, and
Holt
,
N.
,
2002
, “
CFD Modeling for Entrained Flow Gasifiers
,”
Gasification Technologies Conference: New Technology Developments
, San Francisco, CA, Oct. 27–30.
11.
Shi
,
S. P.
,
Zitney
,
S. E.
,
Shahnam
,
M.
,
Syamlal
,
M.
, and
Rogers
,
W. A.
,
2006
, “
Modelling Coal Gasification With CFD and Discrete Phase Method
,”
J. Energy Inst.
,
79
(
4
), pp.
217
221
.
12.
Watanabe
,
H.
, and
Otaka
,
M.
,
2006
, “
Numerical Simulation of Coal Gasification in an Entrained Flow Coal Gasifier
,”
Fuel
,
85
(
1213
), pp.
1935
1943
.
13.
Chui
,
E. H.
,
Majeski
,
A. J.
,
Lu
,
D. Y.
,
Hughes
,
R.
,
Gao
,
H.
,
McCalden
,
D. J.
, and
Anthony
,
E. J.
,
2009
, “
Simulation of Entrained Flow Coal Gasification
,”
Energy Procedia
,
1
(
1
), pp.
503
509
.
14.
Kumar
,
M.
,
Zhang
,
C.
,
Monaghan
,
R. F. D.
,
Singer
,
S. L.
, and
Ghoniem
,
A. F.
,
2009
, “
CFD Simulation of Entrained Flow Gasification With Improved Devolatilization and Char Consumption Submodels
,”
ASME
Paper No. IMECE2009-12982.
15.
Silaen
,
A.
, and
Wang
,
T.
,
2010
, “
Effect of Turbulence and Devolatilization Models on Coal Gasification Simulation in an Entrained-Flow Gasifier
,”
Int. J. Heat Mass Transfer
,
53
(
910
), pp.
2074
2091
.
16.
Slezak
,
A.
,
Kuhlman
,
J. M.
,
Shadle
,
L. J.
,
Spenik
,
J.
, and
Shi
,
S.
,
2010
, “
CFD Simulation of Entrained-Flow Coal Gasification: Coal Particle Density/Size Fraction Effects
,”
Powder Technol.
,
203
(
1
), pp.
98
108
.
17.
Wu
,
Y.
,
Zhang
,
J.
,
Smith
,
P. J.
,
Zhang
,
H.
,
Reid
,
C.
,
Lv
,
J.
, and
Yue
,
G.
,
2010
, “
Three-Dimensional Simulation for an Entrained Flow Coal Slurry Gasifier
,”
Energy Fuels
,
24
(
2
), pp.
1156
1163
.
18.
Ma
,
J.
, and
Zitney
,
S. E.
,
2012
, “
Computational Fluid Dynamic Modeling of Entrained-Flow Gasifiers with Improved Physical and Chemical Submodels
,”
Energy Fuels
,
26
(
12
), pp.
7195
7219
.
19.
Nakod
,
P.
,
2013
, “
CFD Modeling and Validation of Oxy-Fired and Air-Fired Entrained Flow Gasifiers
,”
Int. J. Chem. Phys. Sci.
,
2
(
6
), pp.
28
40
.
20.
Ansys
,
2013
, “
ANSYS Fluent Theory Guide 15.0
,” Ansys Inc., Canonsburg, PA, http://www.ansys.com
21.
Higman
,
C.
, and
van der Burgt
,
M. J.
,
2008
,
Gasification
,
Elsevier
,
Oxford, UK
.
22.
Ma
,
L.
,
2006
, “
Combustion and Gasification of Chars in Oxygen and Carbon Dioxide at Elevated Pressure
,” Ph.D. thesis, Stanford University, Stanford, CA.
23.
Tremel
,
A.
,
2012
, “
Reaction Kinetics of Solid Fuels during Entrained Flow Gasification
,” Ph.D. thesis, Technische Universität München, München, Germany.
24.
Liu
,
H.
,
Luo
,
C.
,
Kato
,
S.
,
Uemiya
,
S.
,
Kaneko
,
M.
, and
Kojima
,
T.
,
2006
, “
Kinetics of CO2/Char Gasification at Elevated Temperatures: Part I: Experimental Results
,”
Fuel Process. Technol.
,
87
(
9
), pp.
775
781
.
25.
Lee
,
J. G.
,
Kim
,
J. H.
,
Lee
,
H. J.
,
Park
,
T. J.
, and
Kim
,
S. D.
,
1996
, “
Characteristics of Entrained Flow Coal Gasification in a Drop Tube Reactor
,”
Fuel
,
75
(
9
), pp.
1035
1042
.
26.
Jones
,
W. P.
, and
Lindstedt
,
R. P.
,
1988
, “
Global Reaction Schemes for Hydrocarbon Combustion
,”
Combust. Flame
,
73
(
3
), pp.
233
249
.
27.
Schingnitz
,
M.
, and
Mehlhose
,
F.
,
2005
, “
MEGA GSP Process, Entrained-Flow Gasification of Coal, Biomass and Waste
,”
International Freiberg Conference on IGCC & XtL Technologies
, Freiberg, Germany, June 16–18.
28.
Hannemann
,
F.
, and
Hui
,
W. D.
,
2015
, “
Siemens Fuel Gasification Technology: Status and New Developments
,”
International Freiberg/Inner Mongolia Conference on IGCC & XtL Technologies
, Huhhot, China, June 7–11.
You do not currently have access to this content.