The process synthesis and design optimization of energy conversion systems can be modeled as a mixed integer nonlinear programming (MINLP) problem. The nonconvexity potential and the combinatorial nature of the objective functions and constraints largely suggest the application of heuristic search methods for global optimization. In this paper, a modified differential evolutionary algorithm is applied to a MINLP problem for optimizing the design of steam cycles based on a complex superstructure, containing a variable number and varying positions of reheatings, varying layouts of the feedwater preheating train, and a boiler feedpump turbine with steam extractions. The energy-savings potential from the existing system design was studied. The optimization of a 262 bar/600 °C/ 605 °C unit with a single reheat shows that an efficiency improvement between 0.55 percentage points (PP) and 1.28 PP can be achieved. The optimal design of steam cycles over 650 °C was found to be different from those of the designs under current steam conditions: a transition throttle pressure, above which the benefits of steam temperature elevation can be completely realized, is critical and, accordingly, three design zones associated with the match of throttle pressure and the steam temperature level are clearly identified with recommended ranges of reheat pressures.

References

1.
International Energy Agency
,
Organisation for Economic Co-operation and Development
, World Energy Outlook 2010, retrieved on May 30, 2012 from www.iea.org/Textbase/npsum/weo2010sum.pdf.
2.
BP Company
,
BP Statistical Review of World Energy
2011
, retrieved on May 30, 2012 from www.bp.com.
3.
Yang
,
Y.
,
Guo
,
X.
, and
Wang
,
N.
,
2010
, “
Power Generation From Pulverized Coal in China
,”
Energy
35
(
11
), pp.
4336
4348
.10.1016/j.energy.2009.05.006
4.
Ruth
,
L. A.
,
2000
, “
Advanced Coal-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
4
9
.10.1115/1.1348270
5.
Bugge
,
J.
,
Kjaer
,
S.
, and
Blum
,
R.
,
2006
, “
High-Efficiency Coal-Fired Power Plants Development and Perspectives
,”
Energy
31
(
10–11
), pp.
1437
1445
.10.1016/j.energy.2005.05.025
6.
Espatolero
,
S.
,
Cortos
,
C.
, and
Romeo
,
L. M.
,
2010
, “
Optimization of Boiler Cold-End and Integration With The Steam Cycle in Supercritical Units
,”
Appl. Energy
87
(
5
), pp.
1651
1660
.10.1016/j.apenergy.2009.10.008
7.
European AD700 project, https://projectweb.elsam-eng.com/AD700/default.aspx (accessed on Oct 25, 2012).
8.
Fukuda
,
Y.
,
2010
, “
Development of Advanced Ultra Supercritical Fossil Power Plants in Japan: Materials and High Temperature Corrosion Properties
,”
Mater. Sci. Forum
,
696
, pp.
236
241
.10.4028/www.scientific.net/MSF.696.236
9.
Weitzel
,
P.
,
2011
, “
Steam Generator for Advanced Ultra-Supercritical Power Plants 700 to 760c
,”
ASME 2011 Power Conference
, Denver, CO.
10.
Silvestri
,
G. J.
,
Bannister
,
R. L.
,
Fujikawa
,
T.
, and
Hizume
,
A.
,
1992
, “
Optimization of Advanced Steam Condition Power Plants
,”
ASME J. Eng. Gas Turbines Power
114
(
4
), pp.
612
620
.10.1115/1.2906634
11.
Silvestri
,
G. J.
,
1995
, “
Boiler Feedpump Turbine Drive/Feedwater Train Arrangement
,” U.S. Patent No 5404724.
12.
Kjaer
,
S.
,
2009
,
Steam Turbine System
, U.S. Patent No 7607304B2.
13.
Kjaer
,
S.
, and
Drinhaus
,
F.
,
2010
, “
A Modified Double Reheat Cycle
,”
ASME Conf. Proc.
,
2010
(
49354
), pp.
285
293
.
14.
Weir
,
C. D.
,
1960
, “
Optimization of Heater Enthalpy Rises in Feed-Heating Trains
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
769
796
.10.1243/PIME_PROC_1960_174_057_02
15.
Grkovic
,
V.
,
1990
, “
Selection of the Optimal Extraction Pressure for Steam From a Condensation-Extraction Turbine
,”
Energy
,
15
(
5
), pp.
459
465
.10.1016/0360-5442(90)90043-2
16.
Papoulias
,
S. A.
, and
Grossmann
,
I. E.
,
1983
, “
A Structural Optimization Approach in Process Synthesis—I: Utility Systems
,”
Comput. Chem. Eng.
,
7
(
6
), pp.
695
706
.10.1016/0098-1354(83)85022-4
17.
Papoulias
,
S. A.
and
Grossmann
,
I. E.
,
1983
, “
A Structural Optimization Approach in Process Synthesis—II: Heat Recovery Networks
,”
Comput. Chem. Eng.
,
7
(
6
), pp.
707
721
.10.1016/0098-1354(83)85023-6
18.
Floudas
,
C. A.
,
1995
,
Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications
,
Oxford University Press
,
New York
.
19.
General Algebraic Modeling System (GAMS)
, www.gams.com/default.htm (accessed on Oct 25,
2012
).
20.
Bussieck
,
M. R.
, and
Vigerske
,
S.
,
2010
, “
MINLP Solver Software
,”
Wiley Encyclopedia of Operations Research and Management Science
,
Cochran
,
J. J.
,
Cox
,
L. A.
,
Keskinocak
,
P.
,
Kharoufeh
,
J. P.
, and
Smith
,
J. C.
, eds.
Wiley
,
Chichester
, UK.
21.
Ahadi-Oskui
,
T.
,
Alperin
,
H.
,
Nowak
,
I.
,
Cziesla
,
F.
, and
Tsatsaronis
,
G.
,
2006
, “
A Relaxation-Based Heuristic for the Design of Cost-Effective Energy Conversion Systems
,”
Energy
31
(
10–11
), pp.
1346
1357
.10.1016/j.energy.2005.05.016
22.
Ahadi-Oskui
,
T.
,
Vigerske
,
S.
,
Nowak
,
I.
, and
Tsatsaronis
,
G.
,
2010
, “
Optimizing the Design of Complex Energy Conversion Systems by Branch and Cut
,”
Comput. Chem. Eng
34
(
8
), pp.
1226
1236
.10.1016/j.compchemeng.2010.03.007
23.
Tabkhi
,
F.
,
Pibouleau
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
,
2009
, “
Total Cost Minimization of a High-Pressure Natural Gas Network
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
043002
.10.1115/1.4000325
24.
Luo
,
X.
,
Zhang
,
B.
,
Chen
,
Y.
, and
Mo
,
S.
,
2011
, “
Modeling and Optimization of a Utility System Containing Multiple Extractions Steam Turbines
,”
Energy
,
36
(
5
), pp.
3501
3512
.10.1016/j.energy.2011.03.056
25.
Luo
,
X.
,
Zhang
,
B.
,
Chen
,
Y.
, and
Mo
,
S.
,
2012
, “
Operational Planning Optimization of Multiple Interconnected Steam Power Plants Considering Environmental Costs
,”
Energy
,
37
(
1
), pp.
549
561
.10.1016/j.energy.2011.10.049
26.
Manassaldi
,
J. I.
,
Mussati
,
S. F.
, and
Scenna
,
N. J.
,
2011
, “
Optimal Synthesis and Design of Heat Recovery Steam Generation (HRSG) Via Mathematical Programming
,”
Energy
,
36
(
1
), pp.
475
485
.10.1016/j.energy.2010.10.017
27.
Frangopoulos
,
C. A.
,
2003
,
Methods of Energy Systems Optimization, Summer School: Optimization of Energy Systems and Processes
, Gliwice, Poland.
28.
Cammarata
,
G.
,
Fichera
,
A.
, and
Marletta
,
L.
,
1998
, “
Using Genetic Algorithms and the Exergonomic Approach to Optimize District Heating Networks
,”
ASME J. Energy Resour. Technol.
,
120
(
3
), pp.
241
246
.10.1115/1.2795042
29.
Ilamathi
,
P.
,
Selladurai
,
V.
, and
Balamurugan
,
K.
,
2013
, “
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032201
.10.1115/1.4023328
30.
Vasquez Padilla
,
R.
,
Ramos Archibold
,
A.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
,
Demirkaya
,
G.
,
Besarati
,
S.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
31.
Soares
,
J.
,
Silva
,
M.
,
Sousa
,
T.
,
Vale
,
Z.
, and
Morais
,
H.
,
2012
, “
Distributed Energy Resource Short-Term Scheduling Using Signaled Particle Swarm Optimization
,”
Energy
,
42
(
1
), pp.
466
476
.10.1016/j.energy.2012.03.022
32.
Zhang
,
Z.
,
Zeng
,
Y.
, and
Kusiak
,
A.
,
2012
, “
Minimizing Pump Energy in a Wastewater Processing Plant
,”
Energy
,
47
(
1
), pp.
505
514
.10.1016/j.energy.2012.08.048
33.
Angira
,
R.
and
Babu
,
B.
,
2006
, “
Optimization of Process Synthesis and Design Problems: A Modified Differential Evolution Approach
,”
Chem. Eng. Sci.
,
61
(
14
), pp.
4707
4721
.10.1016/j.ces.2006.03.004
34.
Differential Evolution Homepage
, www.icsi.berkeley.edu/storn/code.html (accessed on April 20,
2012
).
35.
Babu
,
B.
and
Angira
,
R.
,
2006
, “
Modified Differential Evolution (mde) for Optimization of Non-Linear Chemical Processes
,”
Comput. Chem. Eng.
,
30
(
6
), pp.
989
1002
.10.1016/j.compchemeng.2005.12.020
36.
Amjady
,
N.
and
Sharifzadeh
,
H.
,
2011
, “
Security Constrained Optimal Power Flow Considering Detailed Generator Model by a New Robust Differential Evolution Algorithm
,”
Electr. Power Syst. Res.
,
81
(
2
), pp.
740
749
.10.1016/j.epsr.2010.11.005
37.
Zhang
,
H.
and
Rangaiah
,
G.
,
2012
, “
An Efficient Constraint Handling Method With Integrated Differential Evolution For Numerical and Engineering Optimization
,”
Comput. Chem. Eng.
,
37
(
0
), pp.
74
88
.10.1016/j.compchemeng.2011.09.018
38.
Habib
,
M.
,
Said
,
S.
, and
Al-Zaharna
,
I.
,
1995
, “
Optimization of Reheat Pressures in Thermal Power Plants
,”
Energy
,
20
(
6
), pp.
555
565
.10.1016/0360-5442(94)00087-J
39.
EBSILON Professional 10 by STEAG Energy Services GmbH, Germany, www.ebsilon.com (accessed on Oct 25, 2012).
You do not currently have access to this content.