This paper presents an energy dispatch algorithm for real-time topping cycle cooling, heating, and power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation, (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

1.
Sayane
,
S.
, and
Shokrollahi
,
S.
, 2004, “
Selection and Sizing of Prime Movers in Combined Heat and Power Systems
,”
Proceedings of ASME Turbo Expo
, Vienna, Austria, pp. 613–621.
2.
Action Energy
, 2004, “
Combined Heat and Power for Buildings: Good Practice Guide (GPG388)
,” London, UK.
3.
Zogg
,
R.
,
Roth
,
K.
, and
Brodrick
,
J.
, 2005, “
Using CHP Systems in Commercial Buildings
,”
ASHRAE J.
0001-2491,
47
(
9
), pp.
33
36
.
4.
Robert
,
A.
,
Zogg
,
R. A.
,
Hamilton
,
S. D.
, and
Williams
,
R. C.
, 2002, “
Cooling, Heating, and Power (CHP) for Commercial Buildings Benefits Analysis
,” Distributed Energy Program Report, http://www.eere.energy.gov/de/chp/chp_applications/information_resources.htmlhttp://www.eere.energy.gov/de/chp/chp_applications/information_resources.html
5.
Ren
,
H.
,
Gao
,
W.
, and
Ruan
,
Y.
, 2008, “
Optimal Sizing for Residential CHP System
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
514
523
.
6.
Beihong
,
Z.
, and
Weiding
,
L.
, 2006, “
An Optimal Sizing Method for Cogeneration Plants
,”
Energy Build.
0378-7788,
38
, pp.
189
195
.
7.
Maor
,
I.
, and
Reddy
,
T. A.
, 2009, “
Cost Penalties of Near-Optimal Scheduling Control of BCHP Systems: Part I—Selection of Case Study Scenarios and Data Generation
,”
ASHRAE Trans.
0001-2505,
115
(
1
), pp.
271
286
.
8.
Reddy
,
T. A.
, and
Maor
,
I.
, 2009, “
Cost Penalties of Near-Optimal Scheduling Control of BCHP Systems: Part II—Modeling, Optimization, and Analysis Results
,”
ASHRAE Trans.
0001-2505,
115
(
1
), pp.
287
307
.
9.
Mississippi Micro-CHP and Bio-Fuel Center
, 2005, “
Cooling, Heating, and Power for Buildings (CHP-B) Instructional Module
,” Mississippi State, MS, http://microchp.msstate.edu/pdf/chp-b_instructional_module.pdfhttp://microchp.msstate.edu/pdf/chp-b_instructional_module.pdf
10.
Mississippi Micro-CHP and Bio-Fuel Center
, 2005, “
Micro-Cooling, Heating, and Power Instructional Module
,” Mississippi State, MS, http://microchp.msstate.edu/pdf/m-CHP%20Instructional%20Module.pdfhttp://microchp.msstate.edu/pdf/m-CHP%20Instructional%20Module.pdf
11.
Cardona
,
E.
, and
Piacentino
,
A.
, 2003, “
A Methodology for Sizing a Trigeneration Plant in Mediterranean Areas
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1665
1680
.
12.
Cardona
,
E.
, and
Piacentino
,
A.
, 2006, “
Matching Economical, Energetic, and Environmental Benefits: An Analysis For Hybrid CCHP-Heat Pump Systems
,”
Energy
0360-5442,
31
(
4
), pp.
490
515
.
13.
Jalalzadeh-Azar
,
A.
, 2004, “
A Comparison of Electrical- and Thermal-Load Following CHP Systems
,”
ASHRAE Trans.
0001-2505,
110
, pp.
85
94
.
14.
Cho
,
H.
,
Luck
,
R.
,
Eksioglu
,
S.
, and
Chamra
,
L. M.
, 2009, “
Cost-Optimized Real-Time Operation of CHP Systems
,”
Energy Build.
0378-7788,
41
(
4
), pp.
445
451
.
15.
Rong
,
A.
, and
Lahdelma
,
R.
, 2005, “
An Efficient Linear Programming Model and Optimization Algorithm for Trigeneration
,”
Appl. Energy
0306-2619,
82
, pp.
40
63
.
16.
Lahdelma
,
R.
, and
Hakonen
,
H.
, 2003, “
An Efficient Linear Programming Algorithm for Combined Heat and Power Production
,”
Eur. J. Oper. Res.
0377-2217,
148
, pp.
141
151
.
17.
Thorin
,
E.
,
Brand
,
H.
, and
Weber
,
C.
, 2005, “
Long-term Optimization of Cogeneration Systems in a Competitive Market Environment
,”
Appl. Energy
0306-2619,
81
, pp.
152
169
.
18.
Kong
,
X. Q.
,
Wang
,
R. Z.
, and
Huang
,
X. H.
, 2005, “
Energy Optimization Model for a CCHP System With Available Gas Turbines
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
377
391
.
19.
Katipamula
,
S.
, and
Brambley
,
M. R.
, 2006, “
Advanced CHP Control Algorithms: Scope Specification
,” Report No. PNNL-15796, Pacific Northwest National Laboratory.
20.
Brambley
,
M. R.
, and
Katipamula
,
S.
, 2006, “
Specification of Selected Performance Monitoring and Commissioning Verification Algorithms for CHP Systems
,” Report No. PNNL-16068, Pacific Northwest National Laboratory.
21.
Brambley
,
M. R.
,
Katipamula
,
S.
, and
Jiang
,
W.
, 2008, “
Monitoring and Commissioning Verification Algorithms for CHP Systems
,” Report No. PNNL-17432, Pacific Northwest National Laboratory.
22.
Rooijers
,
F. J.
, and
van Amerongen
,
R. A. M.
, 1994, “
Static Economic Dispatch for Co-Generation Systems
,”
IEEE Trans. Power Syst.
0885-8950,
9
(
3
), pp.
1392
1398
.
23.
Tao
,
G.
,
Henwood
,
M. I.
, and
van Ooijen
,
M.
, 1996, “
An Algorithm for Combined Heat and Power Economic Dispatch
,”
IEEE Trans. Power Syst.
0885-8950,
11
(
4
), pp.
1778
1784
.
24.
Song
,
Y. H.
, and
Xuan
,
Q. Y.
, 1998, “
Combined Heat and Power Economic Dispatch Using Genetic Algorithm Based Penalty Function Method
,”
Electric Power System
,
26
, pp.
363
372
.
25.
Sudhakaran
,
M.
, and
Slochanal
,
S. M. R.
, 2003,
Integrating Genetic Algorithms and Tabu Search for Combined Heat and Power Economic Dispatch
,
Power System Stability and Control
, pp.
67
71
.
26.
Su
,
C. T.
, and
Chiang
,
C. L.
, 2004, “
An Incorporated Algorithm for Combined Heat and Power Economic Dispatch
,”
Electr. Power Syst. Res.
0378-7796,
69
, pp.
187
195
.
27.
Vasebi
,
A.
,
Fesanghary
,
M.
, and
Bathaee
,
S. M. T.
, 2007, “
Combined Heat and Power Economic Dispatch by Harmony Search Algorithm
,”
Int. J. Electr. Power Energy Syst.
0142-0615,
29
, pp.
713
719
.
28.
Wang
,
L.
, and
Singh
,
C.
, 2008, “
Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization
,”
Int. J. Electr. Power Energy Syst.
0142-0615,
30
, pp.
226
234
.
29.
Mago
,
P. J.
,
Fumo
,
N.
, and
Chamra
,
L. M.
, 2009, “
Performance Analysis of CCHP and CHP Systems Operating Following the Thermal and Electric Load
,”
Int. J. Energy Res.
0363-907X,
33
(
9
), pp.
852
864
.
30.
Wang
,
S.
, and
Ma
,
Z.
, 2008, “
Supervisory and Optimal Control of Building HVAC Systems: A Review
,”
HVAC&R Res.
,
14
(
1
), pp.
3
32
. 0002-7820
31.
Henze
,
G. P.
,
Biffar
,
B.
,
Kohn
,
D.
, and
Becker
,
M. P.
, 2008, “
Optimal Design and Operation of a Thermal Storage System for a Chilled Water Plant Serving Pharmaceutical Buildings
,”
Energy Build.
0378-7788,
40
, pp.
1004
1019
.
32.
Astrom
,
K. J.
, and
Wittenmark
,
B.
, 1989,
Adaptive Control
,
Addison-Wesley
,
Reading, MA
, Chap. 5.
33.
Sels
,
T.
,
Dragu
,
C.
,
Van Craenenbroeck
,
T.
, and
Belmans
,
R.
, 2001, “
Electrical Energy Storage Systems: Existing Systems Versus Newest Systems—An Overview
,”
International Conference Power Generation and Sustainable Development (AIM)
, Liège, Belgium, Oct. 8–9, pp.
215
220
.
34.
European Commission
, 2001, “
Energy Storage: A Key Technology for Decentralised Power, Power Quality and Clean Transport
,” Available at ftp://ftp.cordis.europa.eu/pub/eesd/docs/db_energy_storage_eur19978.pdfftp://ftp.cordis.europa.eu/pub/eesd/docs/db_energy_storage_eur19978.pdf
35.
Hong
,
T.
,
Chou
,
S. K.
, and
Bong
,
T. Y.
, 2000, “
Building Simulation: An Overview of Developments and Information Sources
,”
Build. Environ.
0360-1323,
35
, pp.
347
361
.
36.
Ahuja
,
R. K.
,
Magnanti
,
T. L.
, and
Orlin
,
J. B.
, 1993,
Network Flows: Theory, Algorithms, and Applications
,
Prentice-Hall
,
Upper Saddle River, NJ
.
37.
Bixby
,
R. E.
,
Fenelon
,
M.
,
Gu
,
Z.
,
Rothberg
,
E.
, and
Wunderling
,
R.
, 1999, “
MIP: Theory and Practice-Closing the Gap
,”
Proceedings of the 19th IFIP TC7 Conference on System Modelling and Optimization: Methods, Theory and Applications
, Jul. 12–16, pp.
19
50
.
38.
Sakawa
,
M.
,
Kato
,
K.
, and
Ushiro
,
S.
, 2002, “
Operational Planning of District Heating and Cooling Plants Through Genetic Algorithms for Mixed 0-1 Linear Programming
,”
Eur. J. Oper. Res.
0377-2217,
137
, pp.
677
687
.
39.
Li
,
C.
,
Gu
,
J.
, and
Huang
,
X.
, 2008, “
Influence of Energy Demands Ratio on the Optimal Facility Scheme and Feasibility of BCHP System
,”
Energy Build.
0378-7788,
40
, pp.
1876
1882
.
41.
Torcellini
,
P.
,
Deru
,
M.
,
Griffith
,
B.
,
Benne
,
K.
,
Halverson
,
M.
,
Winiarski
,
D.
, and
Crawley
,
D. B.
, 2008, “
DOE Commercial Building Benchmark Models
,”
ACEEE 2008 Summer Study on Energy Efficiency in Buildings, NREL Conference Paper NREL/CP-550-43291
, http://www.nrel.gov/docs/fy08osti/43291.pdfhttp://www.nrel.gov/docs/fy08osti/43291.pdf
42.
U.S. Environmental Protection Agency (EPA)
, Energy Star Program, Target Finder, http://energystar.gov/http://energystar.gov/
44.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., (ASHRAE)
, 2008, ASHRAE Handbook-HVAC Systems and Equipment, Atlanta, GA, Chap. 7, p.
33
.
You do not currently have access to this content.