Stabilization of the combustion of natural gas in high-temperature processes by using the auto-ignition of the fuel when mixed with highly preheated air is well known and has found application on many occasions. Reasonably strong internal flue gas recirculation not only reduces nitric oxides emissions and increases convective heat transfer rates, but reduces local flame temperatures such that the flames become almost invisible for a human eye. This combustion regime is called flameless oxidation. Gasunie’s interest in this technique of flameless oxidation has two aspects. First, it must be clear which geometrical restrictions and flow conditions/disturbances in the oven or furnace have to be taken into account. Secondly, the use of this principle requires the auto-ignition of the fuel. This raises the question as to the stability of the combustion at or near the limits for auto-ignition. The study which is presented here reports on the stability of the oxidation process at these limiting conditions. These conditions are minimum load to the combustion system and minimum temperature in a combustion chamber. The stability has been determined using some “burner”/furnace combinations in which the distance between nozzles for air and natural gas have been varied.

1.
Visser, B. M., 1995, “Verbranding met gescheiden gas/lucht injectie; een studie naar een nieuwe low NOx techniek,” Internal communication, Gasunie.
2.
Wu¨nning, J., 1990, patent EP 0 463 218 A1.
3.
Wu¨nning
,
J. A.
, and
Wu¨nning
,
J. G.
,
1995
, “
Burner Design for Flameless Oxidation With Low NO-Formation Even at Maximum Air Preheat
,”
Ind. Heat.
,
62
, No.
1
, pp.
24
28
.
4.
Nakamachi, I., et al., 1988, patent EP 0 343 746 A2.
5.
Matsumoto, M., Nakamachi, I., Yasuoka, S., Saiki, N., and Koizumi, T., 1995, “Advanced Fuel Direct Injection-FDI-System,” Proc., 11th IFRF Members Conference.
6.
Haep, J., and Flamme, M., 1994, “Untersuchung der NOx-emission bei flammenloser Oxidation und Ofenraumtemperaturen bis 1600°C und Ermittlung des Wirkungsgrades eines FLOX-Brenners im Vergleich zu einem konventionellen Brenner,” Gas Wa¨rme Institut.
7.
Blevins, R. D., Applied Fluid Dynamics Handbook, Krieger Publ., ISBN 0-89464-717-2, Chap. 9.
8.
Bee´r, J. M., and Chigier, N. A., 1972, Combustion Aerodynamics, Applied Science Publishers, London, UK.
9.
Grandmaison
,
E. W.
,
Yimer
,
I.
,
Becker
,
H. A.
, and
Sobiesiak
,
A.
,
1998
, “
The Strong-Jet/Weak-jet Problem and Aerodynamic Modeling of the CGRI Burner
,”
Combust. Flame
,
114
, pp.
381
396
.
10.
Patankar, Su. V., 1980, “Numerical Heat Transfer and Fluid Flow,” Series in Computational Methods in Mechanics and Thermal Sciences, McGraw-Hill, New York.
11.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, The MIT Press, Cambridge, MA and London, England.
12.
Weber, R., Peters, A. A. F. P., Breithaupt, P. P., and Visser, B. M. V., 1993, “Mathematical Modeling of Swirling Pulverized Coal Flames: What can Combustion Engineers expect from Modeling?,” The American Society of Mechanical Engineers (ASME). FACT, Vol. 17, pp. 71–86.
13.
Kremer
,
H.
,
1993
, “
Einsatz der physikalischen und mathematischen Modellierung bei der Entwicklung neuer Brennergenerationen
,”
Gas Wa¨rme Int.
,
42
, No. (
1-1
), pp.
55
68
.
14.
Visser, B. M., 1991, “Mathematical Modelling of Swirling Pulverised Coal Flames,” dissertation, Technical University Delft, The Netherlands.
15.
Philipp, M., 1991, “Experimentelle und theoretische Untersuchungen zum Stabilita¨tsverhalten von Drallflammen mit zentraler Ru¨ckstro¨mzone,” dissertation: Universita¨t Fridericiana Karlsruhe (Technische Hochschule).
16.
Kja¨ldman, L., 1993, “Numerical simulation of combustion and nitrogen pollutants in furnaces,” dissertation: Technical Research Center of Finland, VTT Publications 159, 132 pp.
17.
Breithaupt, P. P., Peters, A. A. F., Piana, C. S., and Weber, R., 1994, “Research, development and implementation of simultaneous low NOx/CO combustion technology for gaseous fuel firing in the iron and steel industry: Mathematical modelling of natural gas, coke-oven flames and reheating furnaces,” IJmuiden: IFRF Doc.Nr. F42/y/6.
18.
Fluent Inc, 1996, “User Guide Fluent V4.4,” Chap. 19.
19.
Pitts
,
W. M.
,
1989
, “
Importance of Isothermal Mixing Processes to the Understanding of Lift-Off and Blowout of Turbulent Jet Diffusion Flames
,”
Combustion and Flame
,
76
, pp.
197
212
.
20.
Dahm
,
W. J. A.
, and
Mayman
,
A. G.
,
1990
, “
Blowout Limits of Turbulent Jet Diffusion Flames for Arbitrary Source Conditions
,”
AIAA J.
,
28
, No.
7
, pp.
1157
1162
.
21.
Janssen, L. P. B. M., and Warmoeskerken, M. M. C. G., 1991, “Transport Phenomena Data Companion,” Technical University, 2nd Edition, Delft, The Netherlands.
22.
Breithaupt, P. P., 1998, “Analysis of local turbulent reaction rates from CFD predictions of a 2 MW natural gas fired Turbulent diffusion flame,” Proc., International Symposium on Computational Technologies for Fluid/Mechanical/Chemical Systems With Industrial Applications, ASME/JSME Meeting, San Diego, CA, July 26–30, pp. 131–144.
23.
Wierzba, I., and Karim, G. A., 1989, “The Flame Propagation Limits of Rich Methane-Gaseous Fuels-Diluents-Mixtures in Air,” Proc., COBEM 89: 10. Brazilian Congress on Mechanical Engineering (Anais do COBEM 89: 10. Congresso Brasileiro de Engenharia Mecanica, eds., M. H. Hirata, J. L. Scieszko, R. M. Cotta, R. A. Tenenbaum, S. L. V. Coelho, Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia, pp. 637–641.
24.
Ale, B. B., and Wierzba, I., 1997, “The Flammability Limits of Hydrogen and Methane in Air at Moderately Elevated Temperatures,” Proc., Thirty-Second Intersociety Energy Conversion Engineering Conference, Vol. 2: Electrochemical Technologies, Conversion Technologies, and Thermal Management, New York, NY, American Inst. of Chemical Engineers, pp. 938–943.
1.
Wierzba
,
I.
, and
Ale
,
B. B.
,
1999
, “
The Effect of Time of Exposure to Elevated Temperatures on the Flammability Limits of Some Common Gaseous Fuels in Air
,”
ASME J. Eng. Gas Turbines Power
,
121
, pp.
74
79
;
2.
also, ASME Turbo Expo ’98, Stockholm, Sweden, June 2–5.
1.
Geerssen, T. M., 1988, “Physical Properties of Natural Gases,” NV Nederlandse Gasunie.
You do not currently have access to this content.