Abstract

Passive cooling through phase change materials (PCM) creates beneficial complimentary cooling techniques aimed at providing thermal gradient mitigation during device operation without additional power requirements. These have been well studied but are difficult to implement due to complications concerning effective enclosure of the liquid phase. Encapsulated PCM particles can be embedded in other materials to form composites with form stable solid–liquid phase transitions. This study characterizes a new composite of silicone gel and encapsulated phase change materials (ePCMs) for use as an encapsulant. The ePCMs contain a paraffin core and titania shell resulting in a self-contained solid–liquid phase transition producing an average of 132.9 J/g of latent heat capacity. The gel composites gain latent heat capacity as a linear function of ePCM concentration by weight. The 30% ePCM sample contains 41.0 J/g of latent heat capacity, approximately 30% of ePCM control samples. The specific heat capacity of the silicone gel without ePCMs is 1.539 J/g-° C and 2.825 J/g-° C for the ePCM particles. As the ePCM concentration increases, the specific heat capacity is increased toward the highest value of the pure ePCMs across all temperature ranges. The coefficient of thermal expansion of the composites is increased with ePCM concentration up to a maximum of 96% in the 20% ePCM concentration. The elastic modulus remains relatively constant across ePCM concentrations and temperatures. In the needle–needle breakdown voltage testing the 20% sample has a 6 kV/mm reduction in dielectric strength and higher than 20% ePCM samples show increased variability in strength due to the dispersed particles. Overall, the results from these material characterizations demonstrate the promise of dielectric composites containing ePCM particles to add passive cooling capability into electronics devices without complex structures.

References

1.
Gao
,
H.
, and
Liu
,
P.
,
2022
, “
High-Temperature Encapsulation Materials for Power Modules: Technology and Future Development Trends
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
12
(
11
), pp.
1867
1881
.10.1109/TCPMT.2022.3225960
2.
Zhang
,
B.
,
Jiang
,
X.
,
Li
,
K.
,
Yang
,
Z.
,
Li
,
X.
,
Chang
,
G.
, and
Ghassemi
,
M.
,
2023
, “
Dielectric Properties Characterization and Evaluation of Commercial Silicone Gels for High-Voltage High-Power Power Electronics Module Packaging
,”
IEEE Trans. Dielectr. Electr. Insul.
,
30
(
1
), pp.
210
219
.10.1109/TDEI.2022.3225247
3.
Ghufran
,
M.
, and
Huitink
,
D.
,
2023
, “
Synthesis of Nano-Size Paraffin/Silica-Based Encapsulated Phase Change Materials of High Encapsulation Ratio Via Sol–Gel Method
,”
J. Mater. Sci.
,
58
(
18
), pp.
7673
7689
.10.1007/s10853-023-08462-y
4.
Li
,
W.
,
Zhang
,
D.
,
Jing
,
T.
,
Gao
,
M.
,
Liu
,
P.
,
He
,
G.
, and
Qin
,
F.
,
2018
, “
Nano-Encapsulated Phase Change Material Slurry (Nano-PCMS) Saturated in Metal Foam: A New Stable and Efficient Strategy for Passive Thermal Management
,”
Energy
,
165
, pp.
743
751
.10.1016/j.energy.2018.09.147
5.
Ping
,
P.
,
Dai
,
X.
,
Kong
,
D.
,
Zhang
,
Y.
,
Zhao
,
H.
,
Gao
,
X.
, and
Gao
,
W.
,
2023
, “
Experimental Study on Nano-Encapsulated Inorganic Phase Change Material for Lithium-Ion Battery Thermal Management and Thermal Runaway Suppression
,”
Chem. Eng. J.
,
463
, p.
142401
.10.1016/j.cej.2023.142401
6.
Zidan
,
A. M.
,
Nayak
,
M. K.
,
Karimi
,
N.
,
Sattar Dogonchi
,
A.
,
Chamkha
,
A. J.
,
Ben Hamida
,
M. B.
, and
Galal
,
A. M.
,
2022
, “
Thermal Management and Natural Convection Flow of Nano Encapsulated Phase Change Material (NEPCM)-Water Suspension in a Reverse T-Shaped Porous Cavity Enshrining Two Hot Corrugated Baffles: A Boost to Renewable Energy Storage
,”
J. Build. Eng.
,
53
, p.
104550
.10.1016/j.jobe.2022.104550
7.
Sun
,
N.
, and
Li
,
X.
,
2021
, “
A Flexible Composite Phase Change Material With Ultrahigh Stretchability for Thermal Management in Wearable Electronics
,”
J. Mater. Sci.
,
56
(
28
), pp.
15937
15949
.10.1007/s10853-021-06290-6
8.
Banaszczyk
,
J.
, and
Adamczyk
,
B.
,
2016
, “
Dielectric Strength Measurements of Silicone Gel
,”
2016 Progress in Applied Electrical Engineering, PAEE 2016
, Koscielisko-Zakopane, Poland, June 26–July 1, pp.
1
4
.10.1109/PAEE.2016.7605111
9.
Wang
,
J.
,
Chen
,
C.
,
Yan
,
H.
,
Wang
,
W.
,
Zou
,
L.
, and
Zhang
,
L.
,
2024
, “
Electrical Trees of Silicone Gel Encapsulation Materials in Power Electronic Modules Self-Healing Properties and Influencing Factors
,”
IEEE Trans. Ind. Appl.
,
60
(
1
), pp.
1288
1297
.10.1109/TIA.2023.3293474
10.
Do
,
M. T.
,
Augé
,
J. L.
, and
Lesaint
,
O.
,
2006
, “
Dielectric Losses and Breakdown in Silicone Gel
,”
Conference on Electrical Insulation and Dielectric Phenomena, CEIDP
, Kansas City, MO, Oct. 15–18, pp.
541
544
.10.1109/CEIDP.2006.311989
11.
Siow
,
K. S.
,
Chen
,
T. F.
,
Chan
,
Y. W.
,
Jalar
,
A.
,
Vemal
,
R. M.
,
Chua
,
S. T.
, and
Husna
,
F.
,
2016
, “
Characterization of Silicone Gel Properties for High Power IGBT Modules and MEMS
,”
2015 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, CSUDET 2015
, Selangor, Malaysia, Oct. 15–17, pp.
23
27
.10.1109/CSUDET.2015.7446220
12.
Li
,
K.
,
Zhang
,
B.
,
Yang
,
Z.
,
Jiang
,
X.
, and
Li
,
X.
,
2022
, “
Degradation Behaviors of Silicone Gel Encapsulation Material With Moisture Intrusion
,”
Polym. Degrad. Stab.
,
206
, p.
110197
.10.1016/j.polymdegradstab.2022.110197
13.
Xu
,
L.
,
Wang
,
M.
,
Zhou
,
Y.
,
Qian
,
Z.
, and
Liu
,
S.
,
2016
, “
Effect of Silicone Gel on the Reliability of Heavy Aluminum Wire Bond for Power Module During Thermal Cycling Test
,”
Proceedings - Electronic Components and Technology Conference
, Las Vegas, NV, May 31–June 3, Vol.
2016
, pp.
1005
1010
.10.1109/ECTC.2016.172
14.
Mancinelli
,
P.
,
Cavallini
,
A.
,
Dodd
,
S. J.
,
Chalashkanov
,
N. M.
, and
DIssado
,
L. A.
,
2017
, “
Analysis of Electrical Tree Inception in Silicone Gels
,”
IEEE Trans. Dielectr. Electr. Insul.
,
24
(
6
), pp.
3974
3984
.10.1109/TDEI.2017.006865
15.
Jiang
,
X.
,
Li
,
K.
,
Yang
,
Z.
,
Zhang
,
B.
, and
Li
,
X.
,
2022
, “
Comparative Analysis on Insulation Degradation Characteristics of Two Commercial Silicone Gels
,”
IEEE International Conference on High Voltage Engineering and Applications, ICHVE 2022
, Chongqing, China, Sept. 25–29, pp.
1
5
.10.1109/ICHVE53725.2022.10014508
16.
Wang
,
N.
,
Cotton
,
I.
,
Robertson
,
J.
,
Follmann
,
S.
,
Evans
,
K.
, and
Newcombe
,
D.
,
2010
, “
Partial Discharge Control in a Power Electronic Module Using High Permittivity Non-Linear Dielectrics
,”
IEEE Trans. Dielectr. Electr. Insul.
,
17
(
4
), pp.
1319
1326
.10.1109/TDEI.2010.5539704
17.
Do
,
T. M.
,
Lesaint
,
O.
, and
Augé
,
J. L.
,
2008
, “
Streamers and Partial Discharge Mechanisms in Silicone Gel Under Impulse and AC Voltages
,”
IEEE Trans. Dielectr. Electr. Insul.
,
15
(
6
), pp.
1526
1534
.10.1109/TDEI.2008.4712654
18.
Tousi
,
M. M.
, and
Ghassemi
,
M.
,
2019
, “
Electrical Insulation Packaging for a 20 kV High Density Wide Bandgap Power Module
,”
IEEE Energy Conversion Congress and Exposition, ECCE
, Baltimore, MD, Sept. 29–Oct. 3, pp.
4162
4166
.10.1109/ECCE.2019.8912894
19.
Xu
,
J.
,
Li
,
X.
,
Cui
,
X.
,
Zhao
,
Z.
,
Mo
,
S.
, and
Ji
,
B.
,
2021
, “
Trap Characteristics and Their Temperature-Dependence of Silicone Gel for Encapsulation in IGBT Power Modules
,”
CSEE J. Power Energy Syst.
,
7
(
3
), pp.
614
621
.10.17775/CSEEJPES.2020.02840
20.
Finis
,
G.
, and
Claudi
,
A.
,
2007
, “
On the Dielectric Breakdown Behavior of Silicone Gel Under Various Stress Conditions
,”
IEEE Trans. Dielectr. Electr. Insul.
,
14
(
2
), pp.
487
494
.10.1109/TDEI.2007.344630
21.
Iradukunda
,
A. C.
,
Huitink
,
D.
,
Kayijuka
,
K.
,
Gebrael
,
T.
, and
Miljkovic
,
N.
,
2023
, “
HFE7500 Coolant Dielectric Strength Augmentation Under Convective Conditions
,”
ASME J. Electron. Packaging, Trans. ASME
,
145
(
1
), p.
011105
.10.1115/1.4056031
22.
Zhang
,
Y.
,
Zhou
,
Y.
,
Zhang
,
L.
,
Zhou
,
Z.
, and
Nie
,
Q.
,
2018
, “
Electrical Trees and Their Growth in Silicone Rubber at Various Voltage Frequencies
,”
Energies
,
11
(
2
), p.
327
.10.3390/en11020327
23.
Zhang
,
B.
,
Yang
,
Z.
,
Li
,
K.
,
Jiang
,
X.
,
Li
,
X.
,
Chang
,
G.
, and
Ghassemi
,
M.
,
2023
, “
Electrical Properties of Silicone Gel for WBG-Based Power Module Packaging at High Temperatures
,”
IEEE Trans. Dielectr. Electr. Insul.
,
30
(
2
), pp.
852
861
.10.1109/TDEI.2022.3228759
24.
Yan
,
F.
,
Wang
,
L.
,
Wang
,
H.
,
Wang
,
S.
, and
Gao
,
K.
,
2023
, “
High Temperature Characteristics of Composite Materials Composed of Silicone Gel and Barium Titanate in High Voltage Power Modules
,”
IEEE Trans. Ind. Appl.
,
59
(
3
), pp.
3648
3659
.10.1109/TIA.2023.3246033
25.
Wang
,
Y.
,
Wu
,
J.
,
Yin
,
Y.
, and
Han
,
T.
,
2020
, “
Effect of Micro and Nano-Size Boron Nitride and Silicon Carbide on Thermal Properties and Partial Discharge Resistance of Silicone Elastomer Composite
,”
IEEE Trans. Dielectr. Electr. Insul.
,
27
(
2
), pp.
377
385
.10.1109/TDEI.2019.008355
26.
Azizi
,
S.
,
Momen
,
G.
,
Ouellet-Plamondon
,
C.
, and
David
,
E.
,
2019
, “
Performance Improvement EPDM EPDM/Silicone Rubber Composites Using Modified Fumed Silica, Titanium Dioxide Graphene Additives
,”
Polymer Testing
,
84
, p.
106281
.10.1016/j.polymertesting.2019.106281
27.
Huang
,
B.
,
Yu
,
Y.
,
Zhao
,
Y.
,
Zhao
,
Y.
,
Dai
,
L.
,
Zhang
,
Z.
, and
Fei
,
H. F.
,
2023
, “
Al@SiO2 Core-Shell Fillers Enhance Dielectric Properties of Silicone Composites
,”
ACS Omega
,
8
(
38
), pp.
35275
35282
.10.1021/acsomega.3c05066
28.
Zeng
,
Y.
,
Xiong
,
C.
,
Li
,
J.
,
Huang
,
Z.
,
Du
,
G.
,
Fan
,
Z.
, and
Chen
,
N.
,
2021
, “
Structural, Dielectric and Mechanical Behaviors of (La, Nb) Co-Doped TiO2/Silicone Rubber Composites
,”
Ceram. Int.
,
47
(
16
), pp.
22365
22372
.10.1016/j.ceramint.2021.04.245
29.
Pieterse
,
P. J.
,
Bekker
,
M.
,
Arumugam
,
S.
, and
Uhrlandt
,
D.
,
2022
, “
Breakdown of Water Saturated Printed Circuit Boards in Dielectric Encapsulation for Deep-Sea Applications
,”
Conference on Electrical Insulation and Dielectric Phenomena, CEIDP
, Denver, CO, Oct. 30–Nov. 2, pp.
393
396
.10.1109/CEIDP55452.2022.9985301
30.
Nishikawa
,
K.
,
Kurimoto
,
M.
,
Muto
,
H.
, and
Kawashimami
,
T.
,
2022
, “
Effect of Titania Nanofiller on Electrical Tree of Silicone Gel
,”
2022 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2022
, Knoxville, TN, June 19–23, pp.
57
59
.10.1109/IPMHVC51093.2022.10099410
31.
Skov
,
A. L.
, and
Yu
,
L.
,
2018
, “
Optimization Techniques for Improving the Performance of Silicone-Based Dielectric Elastomers
,”
Adv. Eng. Mater.
,
20
(
5
), p.
1700762
.10.1002/adem.201700762
32.
Bayer
,
C. F.
,
Baer
,
E.
,
Waltrich
,
U.
,
Malipaard
,
D.
, and
Schletz
,
A.
,
2015
, “
Simulation of the Electric Field Strength in the Vicinity of Metallization Edges on Dielectric Substrates
,”
IEEE Trans. Dielectr. Electr. Insul.
,
22
(
1
), pp.
257
265
.10.1109/TDEI.2014.004285
33.
Ratnakar
,
K. L.
, and
Kamath
,
B. R.
,
2017
, “
Influence of Electrode Configuration on AC Breakdown Voltages
,”
Int. J. Res. Sci. Innovation
,
4
(
6
), pp.
60
63
.https://www.rsisinternational.org/IJRSI/Issue41/60-63.pdf
You do not currently have access to this content.