Abstract

Laser-induced forward transfer (LIFT) is a powerful tool for micro and nanoscale digital printing of metals for electronic packaging. In the metal LIFT process, the donor thin metal film is propelled to the receiving substrate and deposited on it. Morphology of the deposited metal varies with the thermodynamic responses of the donor thin film during and after the laser heating. Thus, the thermophysical properties of the multilayered donor sample are important to predict the LIFT process accurately. Here, we investigated thermophysical properties of a 100 nm-thick gold coated on 0.5 mm-thick sapphire and silicon substrates by means of the nanosecond time-domain thermoreflectance (ns-TDTR) analyzed by the network identification by deconvolution (NID) algorithm, which does not require numerical simulation or analytical solution. The NID algorithm enabled us to extract the thermal time constants of the sample from the nanosecond thermal decay of the sample surface. Furthermore, the cumulative and differential structure functions allowed us to investigate the heat flow path, giving the interfacial thermal resistance and the thermal conductivity of the substrate. After calibration of the NID algorithm using the thermal conductivity of the sapphire, the thermal conductivity of the silicon was determined to be 107–151 W/(m K), which is in good agreement with the widely accepted range of 110–148 W/(m K). Our study shows the feasibility of the structure function obtained from the single-shot TDTR experiments for thermal property estimation in laser processing and electronics packaging applications.

References

1.
Huang
,
Y.-J.
,
Xie
,
X.-Z.
,
Cui
,
J.-Q.
, and
Long
,
J.-Y.
,
2023
, “
Fabrication of High-Performance Copper Circuits Using Laser-Induced Forward Transfer With Large Receiving Gaps Based on Beam Modulation Technology
,”
J. Manuf. Processes
,
87
, pp.
54
64
.10.1016/j.jmapro.2022.12.061
2.
Tseng
,
M. L.
,
Wu
,
P. C.
,
Sun
,
S.
,
Chang
,
C. M.
,
Chen
,
W. T.
,
Chu
,
C. H.
,
Chen
,
P. L.
, et al.,
2012
, “
Fabrication of Multilayer Metamaterials by Femtosecond Laser‐Induced Forward‐Transfer Technique
,”
Laser Photonics Rev.
,
6
(
5
), pp.
702
707
.10.1002/lpor.201200029
3.
Kuznetsov
,
A. I.
,
Koch
,
J.
, and
Chichkov
,
B. N.
,
2009
, “
Laser-Induced Backward Transfer of Gold Nanodroplets
,”
Opt. Express
,
17
(
21
), pp.
18820
18825
.10.1364/OE.17.018820
4.
Zenou
,
M.
,
Sa'Ar
,
A.
, and
Kotler
,
Z.
,
2015
, “
Laser Jetting of Femto-Liter Metal Droplets for High Resolution 3D Printed Structures
,”
Sci. Rep.
,
5
(
1
), p.
17265
.10.1038/srep17265
5.
Serra
,
P.
, and
Piqué
,
A.
,
2019
, “
Laser‐Induced Forward Transfer: Fundamentals and Applications
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800099
.10.1002/admt.201800099
6.
Munoz-Martin
,
D.
,
Brasz
,
C. F.
,
Chen
,
Y.
,
Morales
,
M.
,
Arnold
,
C. B.
, and
Molpeceres
,
C.
,
2016
, “
Laser-Induced Forward Transfer of High-Viscosity Silver Pastes
,”
Appl. Surf. Sci.
,
366
, pp.
389
396
.10.1016/j.apsusc.2016.01.029
7.
Kim
,
B.
,
Nam
,
H. K.
,
Watanabe
,
S.
,
Park
,
S.
,
Kim
,
Y.
,
Kim
,
Y.-J.
,
Fushinobu
,
K.
, and
Kim
,
S.-W.
,
2021
, “
Selective Laser Ablation of Metal Thin Films Using Ultrashort Pulses
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
8
(
3
), pp.
771
782
.10.1007/s40684-020-00272-w
8.
Garrelts
,
R.
,
Marconnet
,
A.
, and
Xu
,
X.
,
2015
, “
Assessment of Thermal Properties Via Nanosecond Thermoreflectance Method
,”
Nanoscale Microscale Thermophys. Eng.
,
19
(
4
), pp.
245
257
.10.1080/15567265.2015.1078425
9.
Paddock
,
C. A.
, and
Eesley
,
G. L.
,
1986
, “
Transient Thermoreflectance From Thin Metal Films
,”
J. Appl. Phys.
,
60
(
1
), pp.
285
290
.10.1063/1.337642
10.
Bozorg-Grayeli
,
E.
,
2012
, “
Ultrafast Optical Characterization of Nanoscale Thermal Properties
,”
Doctoral dissertation
,
Stanford University
, Stanford, CA.https://purl.stanford.edu/rn283rg1737
11.
Székely
,
V.
, and
Van Bien
,
T.
,
1988
, “
Fine Structure of Heat Flow Path in Semiconductor Devices: A Measurement and Identification Method
,”
Solid-State Electron.
,
31
(
9
), pp.
1363
1368
.10.1016/0038-1101(88)90099-8
12.
Székely
,
V.
,
1997
, “
A New Evaluation Method of Thermal Transient Measurement Results
,”
Microelectron. J.
,
28
(
3
), pp.
277
292
.10.1016/S0026-2692(96)00031-6
13.
Székely
,
V.
,
2002
, “
Enhancing Reliability With Thermal Transient Testing
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
629
640
.10.1016/S0026-2714(02)00028-8
14.
Rencz
,
M.
, and
Szekely
,
V.
,
2004
, “
Structure Function Evaluation of Stacked Dies
,”
20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
IEEE Cat. No. 04CH37545
), San Jose, CA,
Mar. 11
, pp.
50
54
.10.1109/STHERM.2004.1291301
15.
Ezzahri
,
Y.
, and
Shakouri
,
A.
,
2009
, “
Application of Network Identification by Deconvolution Method to the Thermal Analysis of the Pump-Probe Transient Thermoreflectance Signal
,”
Rev. Sci. Instrum.
,
80
(
7
), p.
074903
.10.1063/1.3176463
16.
Mitterhuber
,
L.
,
Kraker
,
E.
, and
Defregger
,
S.
,
2019
, “
Structure Function Analysis of Temperature-Dependent Thermal Properties of Nm-Thin Nb2O5
,”
Energies
,
12
(
4
), p.
610
.10.3390/en12040610
17.
Favaloro
,
T.
,
Bahk
,
J.-H.
, and
Shakouri
,
A.
,
2015
, “
Characterization of the Temperature Dependence of the Thermoreflectance Coefficient for Conductive Thin Films
,”
Rev. Sci. Instrum.
,
86
(
2
), p.
024903
.10.1063/1.4907354
18.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2010
, “
Characterization of Thin Metal Films Via Frequency-Domain Thermoreflectance
,”
J. Appl. Phys.
,
107
(
2
), p.
024908
.10.1063/1.3289907
19.
Zhang
,
Y.
,
Zhu
,
W.
, and
Borca-Tasciuc
,
T.
,
2021
, “
Thermal Conductivity Measurements of Thin Films by Non-Contact Scanning Thermal Microscopy Under Ambient Conditions
,”
Nanoscale Adv.
,
3
(
3
), pp.
692
702
.10.1039/D0NA00657B
20.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
21.
Kyocera
,
2024
, “
Technical Data Sapphire
,” Kyocera, Kyoto, Japan, accessed July 12, 2024, https://global.kyocera.com/prdct/fc/list/material/sapphire/sapphire.html
22.
Hofmeister
,
A. M.
,
2014
, “
Thermal Diffusivity and Thermal Conductivity of Single-Crystal MgO and Al2O3 and Related Compounds as a Function of Temperature
,”
Phys. Chem. Miner.
,
41
(
5
), pp.
361
371
.10.1007/s00269-014-0655-3
23.
Magomedov
,
Y. B.
, and
Gadjiev
,
G. G.
,
2008
, “
High-Temperature Thermal Conductivity of Silicon in the Solid and Liquid Status
,”
High Temp.
,
46
(
3
), pp.
422
424
.10.1134/S0018151X08030206
24.
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond
,”
J. Appl. Phys.
,
35
(
12
), pp.
3460
3466
.10.1063/1.1713251
25.
Shanks
,
H. R.
,
Maycock
,
P. D.
,
Sidles
,
P. H.
, and
Danielson
,
G. C.
,
1963
, “
Thermal Conductivity of Silicon From 300 to 1400°K
,”
Phys. Rev.
,
130
(
5
), pp.
1743
1748
.10.1103/PhysRev.130.1743
26.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
(
2
), pp.
279
421
.10.1063/1.3253100
27.
Smith
,
A. N.
, and
Hostetler
,
J. L.
,
2000
, “
Thermal Boundary Resistance Measurements Using a Transient Thermoreflectance Technique
,”
Microscale Thermophys. Eng.
,
4
(
1
), pp.
51
60
.10.1080/108939500199637
28.
Stevens
,
R. J.
,
Smith
,
A. N.
, and
Norris
,
P. M.
,
2005
, “
Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
3
), pp.
315
322
.10.1115/1.1857944
You do not currently have access to this content.