Abstract

The variety of new electronic packaging technologies has grown significantly over the last 20 years as a result of market demands for higher device performance at lower costs and in less space. Those demands have pushed for heterogeneous packaging, where computer chips with different stack heights are closely packed, creating nonuniform heat flux and temperature and additional challenges for thermal management. Without implementing an appropriate thermal management strategy for heterogeneous packages, large temperature gradients can be observed within the package, which would increase the thermal stresses on the chip and raise reliability issues. To mimic this real-life scenario of such packaging, an experimental setup was designed and built. The design of the new experimental setup consists of four identical 1.2 cm × 1.2 cm ceramic heaters, each of which is connected to a separate power supply and can reach a heat flux of 140 W/cm2. Accordingly, this mock package is capable of delivering different power levels to mimic different multicore microprocessor conditions. To give the heater the ability to move precisely in the x-, y-, and z-directions, each heater is mounted to an XYZ linear stage. Deionized water (DI) was used as the working fluid, and a pin-fin heat sink was used to run the initial steady-state tests on the experimental rig. The tests showed how different flow rates at a constant fluid temperature and input power affect the temperatures of the heaters and the thermohydraulic performance of the heat sink. In addition, a three-dimensional numerical model has been developed and validated with experimental data in terms of heat sink pressure drop and the temperatures of the heaters.

References

1.
He
,
Z.
,
Ding
,
T.
,
Liu
,
Y.
, and
Li
,
Z.
,
2018
, “
Analysis of a District Heating System Using Waste Heat in a Distributed Cooling Data Center
,”
Appl. Therm. Eng.
,
141
, pp.
1131
1140
.10.1016/j.applthermaleng.2018.06.036
2.
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
Gharaibeh
,
A. R.
,
Sammakia
,
B. G.
, and
Tipton
,
R.
,
2021
, “
Shifting to Energy Efficient Hybrid Cooled Data Centers Using Novel Embedded Floor Tiles Heat Exchangers
,”
Energy Convers. Manag.
,
247
, p.
114762
.10.1016/j.enconman.2021.114762
3.
Shehabi
,
A.
,
Smith
,
S.
,
Sartor
,
D.
,
Brown
,
R.
, and
Herrlin
,
M.
,
2016
, “
United States Data Center Energy Usage Report
,” Lawrence Berkeley National Laboratory, Berkeley, CA, No. LBNL-1005775, accessed May 13, 2024, https://escholarship.org/content/qt84p772fc/qt84p772fc.pdf
4.
Broughton
,
J.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
5.
Zhang
,
H. Y.
,
Pinjala
,
D.
, and
Teo
,
P. S.
,
2003
, “
Thermal Management of High Power Dissipation Electronic Packages: From Air Cooling to Liquid Cooling
,” Proceedings of Fifth Electronics Packaging Technology Conference,
EPTC 2003
, Singapore, Dec. 12, pp.
620
625
.10.1109/EPTC.2003.1271593
6.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
,
2003
, “
Air-Cooling extension - Performance Limits for Processor Cooling Applications
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 11–13, pp.
74
81
.10.1109/STHERM.2003.1194342
7.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
8.
Radmard
,
V.
,
Azizi
,
A.
,
Rangarajan
,
S.
,
Fallahtafti
,
N.
,
Hoang
,
C. H.
,
Mohsenian
,
G.
,
Nemati
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B.
,
2021
, “
Performance Analysis of Impinging Chip-Attached Micro Pin Fin Direct Liquid Cooling Package for Hotspot Targeted Applications
,” 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
iTherm
), San Diego, CA, June 1–4, pp. 220–228.10.1109/ITherm51669.2021.9503295
9.
Kandlikar, S. G., and Bapat, A. V., 2007, “Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal,”
Heat Transfer Eng.
, 28(11), pp. 911–923.10.1080/01457630701421703
10.
Gharaibeh
,
A. R.
,
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
AlShatnawi
,
F. W.
,
Schiffres
,
S. N.
, and
Sammakia
,
B. G.
,
2022
, “
Using a Multi-Inlet/Outlet Manifold to Improve Heat Transfer and Flow Distribution of a Pin Fin Heat Sink
,”
ASME J. Electron. Packag.
,
144
(
3
), p. 031017.10.1115/1.4054461
11.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
12.
Radmard
,
V.
,
Gharaibeh
,
A. R.
,
Tradat
,
M. I.
,
Hoang
,
C. H.
,
Manaserh
,
Y. Y.
,
Nemati
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B. G.
,
2023
, “
Performance Analysis of Corrosion Resistant Electroless Nickel-Plated Impinging Computer Numerical Control Manufactured Liquid Cooling Cold Plate
,”
ASME J. Electron. Packag.
,
145
(
2
), p. 021001.10.1115/1.4054972
13.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
,
1996
, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,” InterSociety Conference on Thermal Phenomena in Electronic Systems,
I-THERM V
, Orlando, FL, May 29, pp. 251–257.10.1109/95.588554
14.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.10.1016/S0017-9310(02)00443-X
15.
Labergue
,
A.
,
Gradeck
,
M.
, and
Lemoine
,
F.
,
2015
, “
Comparative Study of the Cooling of a Hot Temperature Surface Using Sprays and Liquid Jets
,”
Int. J. Heat Mass Transfer
, 81, pp. 889–900. 10.1016/j.ijheatmasstransfer.2014.11.018
16.
Iyengar
,
M.
, and
Ellsworth
, M. Jr.,
2004
, “
Design and Analysis of Direct Liquid Multi-Jet Impingement Schemes for Electronics Applications
,”
ASME
Paper No. IMECE2004-61495.10.1115/IMECE2004-61495
17.
Ansari
,
D.
, and
Kim
,
K. Y.
,
2018
, “
Hotspot Thermal Management Using a Microchannel-Pinfin Hybrid Heat Sink
,”
Int. J. Therm. Sci.
, 134, pp. 27–39.10.1016/j.ijthermalsci.2018.07.043
18.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
,
1990
, “
Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
4
), pp.
891
898
.10.1115/1.2910496
19.
Hadad
,
Y
,
Fallahtafti
,
N.
,
Choobineh
,
L.
,
Hoang
,
C. H.
,
Radmard
,
V.
,
Chiarot
,
P. R.
, and
Sammakia
,
B.
,
2020
, “
Performance Analysis and Shape Optimization of an Impingement Microchannel Cold Plate
,”
IEEE Transactions on Components, Packaging and Manufacturing
, 10(8), pp.
1304
1319
.10.1109/TCPMT.2020.3005824
20.
Bar-Cohen
,
A.
,
1987
, “
Thermal Management of Air- and Liquid-Cooled Multichip Modules
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
10
(
2
), pp.
159
175
.10.1109/TCHMT.1987.1134734
21.
Song
,
Y.
,
Fu
,
R.
,
Chen
,
C.
,
Wang
,
Q.
,
Su
,
M.
,
Hou
,
F.
,
Zhang
,
X.
,
Li
,
J.
, and
Cao
,
L.
,
2022
, “
Case-Embedded Cooling for High Heat Flux Microwave Multi-Chip Array
,”
Appl. Therm. Eng.
,
214
, p.
118852
.10.1016/j.applthermaleng.2022.118852
22.
Zhang
,
N.
,
Jiao
,
B.
,
Ye
,
Y.
,
Kong
,
Y.
,
Du
,
X.
,
Liu
,
R.
,
Cong
,
B.
, et al.,
2022
, “
Embedded Cooling Method With Configurability and Replaceability for Multi-Chip Electronic Devices
,”
Energy Convers Manag
,
253
, p.
115124
.10.1016/j.enconman.2021.115124
23.
Ramakrishnan
,
B.
,
Hadad
,
Y.
,
Alkharabsheh
,
S.
,
Chiarot
,
P. R.
,
Ghose
,
K.
,
Sammakia
,
B.
,
Gektin
,
V.
, and
Chao
,
W.
,
2018
, “
Experimental Characterization of Cold Plates Used in Cooling Multi Chip Server Modules (MCM)
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp. 664–672.10.1109/ITHERM.2018.8419643
24.
Manaserh
,
Y. A.
,
Gharaibeh
,
A. R.
,
Tradat
,
M. I.
,
Rangarajan
,
S.
,
Sammakia
,
B. G.
, and
Alissa
,
H. A.
,
2021
, “
Multi-Objective Optimization of 3D Printed Liquid Cooled Heat Sink With Guide Vanes for Targeting Hotspots in High Heat Flux Electronics
,”
Int. J. Heat Mass Transfer
,
184
, p.
122287
.10.1016/j.ijheatmasstransfer.2021.122287
You do not currently have access to this content.