As integration levels increase in next generation electronics, high power density devices become more susceptible to hotspot formation, which often imposes a thermal limitation on performance. Flow boiling of R134a in two microgap heat sink configurations was investigated as a solution for hotspot thermal management: a bare microgap and inline micro-pin fin populated microgap, both with 10 μm gap height, were tested in terms of their ability to dissipate heat fluxes approaching 5 kW/cm2 at the heat source. Additional parameters investigated include mass fluxes up to 3000 kg/m2 s at inlet pressures up to 1.5 MPa and exit qualities approaching unity. The microgap testbeds investigated consist of a silicon layer which is heated from the bottom using resistive heaters and capped with glass to enable visual observation of two-phase flow regimes. Wall temperature, device thermal resistance, and pressure drop results are presented and mapped to the dominant flow regimes that were observed in the microgap.

References

1.
Hamann
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid-State Circuits
,
42
(
1
), pp.
56
65
.
2.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
4.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transf.
,
48
(
17
), pp.
3615
3627
.
5.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Töral
,
G.
,
Temiz
,
Y.
, and
Leblebici
,
Y.
,
2009
, “
Validation of the Porous-Medium Approach to Model Interlayer-Cooled 3D-Chip Stacks
,”
IEEE International Conference on 3D System Integration
(
3DIC
), San Francisco, CA, Sept. 28–30, pp.
1
10
.
6.
Chang
,
K. H.
, and
Pan
,
C.
,
2007
, “
Two-Phase Flow Instability for Boiling in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transf.
,
50
(
11
), pp.
2078
2088
.
7.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2006
, “
Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality
,”
Int. J. Multiphase Flow
,
32
(
10
), pp.
1141
1159
.
8.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2
), pp.
389
407
.
9.
Bar-Cohen
,
A.
,
Sheehan
,
J. R.
, and
Rahim
,
E.
,
2012
, “
Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results, and Predictive Relations
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.
10.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transf.
,
58
(
1
), pp.
335
347
.
11.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transf.
,
50
(
5
), pp.
1018
1034
.
12.
Reeser
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
High Quality Flow Boiling Heat Transfer and Pressure Drop in Microgap Pin Fin Arrays
,”
Int. J. Heat Mass Transf.
,
78
, pp.
974
985
.
13.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transf.
,
51
(
5
), pp.
1349
1364
.
14.
Isaacs
,
S. A.
,
Kim
,
Y. J.
,
McNamara
,
A. J.
,
Joshi
,
Y.
,
Zhang
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
Two-Phase Flow and Heat Transfer in Pin-Fin Enhanced Micro-Gaps
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
1084
1089
.
15.
Law
,
M.
,
Lee
,
P. S.
, and
Balasubramanian
,
K.
,
2014
, “
Experimental Investigation of Flow Boiling Heat Transfer in Novel Oblique-Finned Microchannels
,”
Int. J. Heat Mass Transf.
,
76
, pp.
419
431
.
16.
Bar-Cohen
,
A.
, and
Rahim
,
E.
,
2009
, “
Modeling and Prediction of Two-Phase Microgap Channel Heat Transfer Characteristics
,”
Heat Transf. Eng.
,
30
(
8
), pp.
601
625
.
17.
Rahim
,
E.
, and
Bar-Cohen
,
A.
,
2010
, “
Parametric Dependence of Annular Flow Heat Transfer in Microgaps
,”
14th International Heat Transfer Conference, Washington, DC, Aug. 8–13
,
ASME
Paper No. IHTC14-23315.
18.
Kim
,
D. W.
,
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Han
,
B.
,
2010
, “
Direct Submount Cooling of High-Power LEDs
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
4
), pp.
698
712
.
19.
Gbur
,
A. M.
,
2005
, “
Determination of Dielectric Properties of Refrigerants
,”
ASHRAE Trans.
,
111
(
1
), pp.
26
36
.
20.
Green
,
C.
,
Kottke
,
P.
,
Han
,
X.
,
Woodrum
,
C.
,
Sarvey
,
T.
,
Asrar
,
P.
,
Zhang
,
X.
,
Joshi
,
Y.
,
Fedorov
,
A.
,
Sitaraman
,
S.
, and
Bakir
,
M.
,
2015
, “
A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040802
.
21.
Nasr
,
M. H.
,
Green
,
C.
,
Kottke
,
P. A.
,
Zhang
,
X.
,
Sarvey
,
T. E.
,
Joshi
,
Y. K.
,
Bakir
,
M. S.
, and
Fedorov
,
A. G.
,
2016
, “
Flow Regimes and Convective Heat Transfer of Refrigerant Flow Boiling in Ultra-Small Microgaps
,”
Int. J. Heat Mass Transf.
, (accepted).
You do not currently have access to this content.