Multi-microchannel evaporators are often used to cool down electronic devices subjected to continuous heat load variations. However, so far, rare studies have addressed the transient flow boiling local heat transfer data occurring in such applications. The present paper introduces and compares two different data reduction methods for transient flow boiling data in a multi-microchannel evaporator. A transient test of heat disturbance from 20 to 30 W cm−2 was conducted in a multi-microchannel evaporator using R236fa as the test fluid. The test section was 1 × 1 cm2 in size and had 67 channels, each having a cross-sectional area of 100 × 100 μm2. The micro-evaporator backside temperature was obtained with a fine-resolution infrared (IR) camera. The first data reduction method (referred to three-dimensional (3D)-TDMA) consists in solving a transient 3D inverse heat conduction problem by using a tridiagonal matrix algorithm (TDMA), a Newton–Raphson iteration, and a local energy balance method. The second method (referred to two-dimensional (2D)-controlled) considers only 2D conduction in the substrate of the micro-evaporator and solves at each time step the well-posed 2D conduction problem using a semi-implicit solver. It is shown that the first method is more accurate, while the second one reduces significantly the computational time but led to an approximated solution. This is mainly due to the 2D assumption used in the second method without considering heat conduction in the widthwise direction of the micro-evaporator.

References

1.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Fine-Resolution Two-Phase Flow Heat Transfer Coefficient Measurements of Refrigerants in Multi-Microchannel Evaporators
,”
Int. J. Heat Mass Transfer
,
67
, pp.
913
929
.
2.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.
3.
Agostini
,
B.
,
Revellin
,
R.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part III: Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drops
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5426
5442
.
4.
Costa-Patry
,
E.
,
Olivier
,
J.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Two-Phase Flow of Refrigerants in 85 μm-Wide Multi-Microchannels: Part II—heat Transfer With 35 Local Heaters
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
464
476
.
5.
Kim
,
S.
, and
Mudawar
,
I.
,
2014
, “
Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
77
, pp.
627
652
.
6.
Huang
,
H.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2016
, “
Experimental Investigation on Flow Boiling Pressure Drop and Heat Transfer of R1233zd(E) in a Multi-Microchannel Evaporator
,”
Int. J. Heat Mass Transfer
,
98
, pp.
596
610
.
7.
Lee
,
H.
,
Agonafer
,
D.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2016
, “
Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010907
.
8.
Rao
,
S.
,
Houshmand
,
F.
, and
Peles
,
Y.
,
2014
, “
Transient Flow Boiling Heat-Transfer Measurements in Microdomains
,”
Int. J. Heat Mass Transfer
,
76
, pp.
317
329
.
9.
Bigham
,
S.
, and
Moghaddam
,
S.
,
2015
, “
Microscale Study of Mechanisms of Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
88
, pp.
111
121
.
10.
Rao
,
S.
, and
Peles
,
Y.
,
2015
, “
Spatiotemporally Resolved Heat Transfer Measurements for Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
89
, pp.
482
493
.
11.
Chen
,
G.
, and
Cheng
,
P.
,
2009
, “
Nucleate and Film Boiling on a Microheater Under Pulse Heating in a Microchannel
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
391
396
.
12.
Chen
,
G.
,
Quan
,
X.
, and
Cheng
,
P.
,
2010
, “
Effects of Surfactant Additive on Flow Boiling Over a Microheater Under Pulse Heating
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1586
1590
.
13.
Basu
,
S.
,
Werneke
,
B.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2015
, “
Thermal Behavior of a Microdevice Under Transient Heat Loads
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1078
1087
.
14.
Basu
,
S.
,
Werneke
,
B.
,
Peles
,
Y.
, and
Jensen
,
M.
,
2015
, “
Transient Microscale Flow Boiling Heat Transfer Characteristics of HFE-7000
,”
Int. J. Heat Mass Transfer
,
90
, pp.
396
405
.
15.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
,
2002
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3275
3286
.
16.
Xu
,
J. L.
,
Gan
,
Y.
,
Zhang
,
D.
, and
Li
,
X.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1662
1674
.
17.
Huang
,
H.
,
Borhani
,
N.
, and
Thome
,
J.
,
2016
, “
Thermal Response of Multi-Microchannel Evaporators During Flow Boiling of Refrigerants Under Transient Heat Loads With Flow Visualization
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031004
.
18.
Huang
,
H.
,
Borhani
,
N.
,
Lamaison
,
N.
, and
Thome
,
J.
,
2016
, “
A New Method for Reducing Local Heat Transfer Data in Multi-Microchannel Evaporators
,”
Int. J. Therm. Sci.
, (in review).
19.
Lamaison
,
N.
,
Marcinichen
,
J.
, and
Thome
,
J.
,
2013
, “
Two-Phase Flow Control of Electronics Cooling With Pseudo-CPUs in Parallel Flow Circuits: Transient Modeling and Experimental Evaluation
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030908
.
20.
Shah
,
R.
, and
London
,
A.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
21.
Incropera
,
F. P.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
22.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
23.
Karimi
,
A.
,
Kunze
,
M.
, and
Longchamp
,
R.
,
2007
, “
Robust Controller Design by Linear Programming With Application to a Double-Axis Positioning System
,”
Control Eng. Pract.
,
15
(
2
), pp.
197
208
.
24.
Lamaison
,
N.
,
2014
, “
Dynamic Modeling and Experimental Evaluation of a Controlled Two-Phase On-Chip Cooling System Designed for High Efficiency Datacenters
,”
Ph.D. thesis
, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
25.
Hindmarsh
,
A.
,
1980
, “
LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers
,”
ACM SIGNUM Newsl.
,
15
(
4
), pp.
10
11
.
You do not currently have access to this content.