Three-dimensional (3D) stacked electronics present significant advantages from an electrical design perspective, ranging from shorter interconnect lengths to enabling heterogeneous integration. However, multitier stacking exacerbates an already difficult thermal problem. Localized hotspots within individual tiers can provide an additional challenge when the high heat flux region is buried within the stack. Numerous investigations have been launched in the previous decade seeking to develop cooling solutions that can be integrated within the 3D stack, allowing the cooling to scale with the number of tiers in the system. Two-phase cooling is of particular interest, because the associated reduced flow rates may allow reduction in pumping power, and the saturated temperature condition of the coolant may offer enhanced device temperature uniformity. This paper presents a review of the advances in two-phase forced cooling in the past decade, with a focus on the challenges of integrating the technology in high heat flux 3D systems. A holistic approach is applied, considering not only the thermal performance of standalone cooling strategies but also coolant selection, fluidic routing, packaging, and system reliability. Finally, a cohesive approach to thermal design of an evaporative cooling based heat sink developed by the authors is presented, taking into account all of the integration considerations discussed previously. The thermal design seeks to achieve the dissipation of very large (in excess of 500 W/cm2) background heat fluxes over a large 1 cm × 1 cm chip area, as well as extreme (in excess of 2 kW/cm2) hotspot heat fluxes over small 200 μm × 200 μm areas, employing a hybrid design strategy that combines a micropin–fin heat sink for background cooling as well as localized, ultrathin microgaps for hotspot cooling.

References

1.
Souri
,
S. J.
,
Banerjee
,
K.
,
Mehrotra
,
A.
, and
Saraswat
,
K. C.
,
2000
, “
Multiple Si Layer ICs: Motivation, Performance Analysis, and Design Implications
,”
37th Annual Design Automation Conference
(
DAC
), Los Angeles, CA, June 5–9, pp.
213
220
.
2.
Lau
,
J. H.
,
2014
, “
Overview and Outlook of Three-Dimensional Integrated Circuit Packaging, Three-Dimensional Si Integration, and Three-Dimensional Integrated Circuit Integration
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
040801
.
3.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
,
2009
, “
Interlayer Cooling Potential in Vertically Integrated Packages
,”
Microsyst. Technol.
,
15
(
1
), pp.
57
74
.
4.
Tuckerman
,
D. B.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
5.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Felbinger
,
J. G.
,
2013
, “
DARPA’s Intra/Interchip Enhanced Cooling (ICECool) Program
,”
Compound Semiconductor Manufacturing Technology Conference
(
CSMANTECH
), New Orleans, LA, May 13–16, pp.
171
174
.
6.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
7.
Szczukiewicz
,
S.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2014
, “
Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling
,”
Int. J. Multiphase Flow
,
59
, pp.
84
101
.
8.
Green
,
C. E.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2009
, “
Scaling Analysis of Performance Tradeoffs in Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
868
875
.
9.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2011
, “
Boiling Heat Transfer and Flow Regimes in Microchannels—A Comprehensive Understanding
,”
ASME J. Electron. Packag.
,
133
(
1
), p.
011001
.
10.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.
11.
Tibirica
,
C. B.
, and
Ribatski
,
G.
,
2013
, “
Flow Boiling in Micro-Scale Channels–Synthesized Literature Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
301
324
.
12.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
,
2011
, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
309
324
.
13.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2001
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(1), pp.
16
23
.
14.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
58
(1–2), pp.
335
347
.
15.
Sahu
,
V.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2009
, “
Hybrid Solid State/Fluidic Cooling for Hot Spot Removal
,”
Nanoscale Microscale Thermophys. Eng.
,
13
(
3
), pp.
135
150
.
16.
Marcinichen
,
J. B.
,
d’Entremont
,
B. P.
,
Thome
,
J. R.
,
Bulman
,
G.
,
Lewis
,
J.
, and
Venkatasubramanian
,
R.
,
2013
, “
Thermal Management of Ultra Intense Hot Spots With Two-Phase Multi-Microchannels and Embedded Thermoelectric Cooling
,”
ASME
Paper No. IPACK2013-73276.
17.
Green
,
C.
,
Fedorov
,
A. G.
, and
Joshi
,
Y. K.
,
2009
, “
Fluid-To-Fluid Spot-To-Spreader (F2/S2) Hybrid Heat Sink for Integrated Chip-Level and Hot Spot-Level Thermal Management
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
025002
.
18.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
, and
Cummins
,
G.
,
2009
, “
Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
854
867
.
19.
Chang
,
K.
, and
Pan
,
C.
,
2007
, “
Two-Phase Flow Instability for Boiling in a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2078
2088
.
20.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(9–10), pp.
2267
2281
.
21.
Wu
,
H.
, and
Cheng
,
P.
,
2003
, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2603
2614
.
22.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2006
, “
Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality
,”
Int. J. Multiphase Flow
,
32
(10–11), pp.
1141
1159
.
23.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 × 100 μm2 Silicon Multi-Microchannels
,”
Int. J. Refrig.
,
36
(
2
), pp.
402
413
.
24.
Park
,
J. E.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2009
, “
Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks
,”
25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM 2009
), San Jose, CA, Mar. 15–19.
25.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
26.
Lu
,
C. T.
, and
Pan
,
C.
,
2008
, “
Stabilization of Flow Boiling in Microchannel Heat Sinks With a Diverging Cross-Section Design
,”
J. Micromech. Microeng.
,
18
(
7
), p.
075035
.
27.
Kandlikar
,
S. G.
,
2003
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME
Paper No. ICMM2003-1005.
28.
Lu
,
C. T.
, and
Pan
,
C.
,
2009
, “
A Highly Stable Microchannel Heat Sink for Convective Boiling
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055013
.
29.
David
,
M. P.
,
Miler
,
J.
,
Steinbrenner
,
J. E.
,
Yang
,
Y.
,
Touzelbaev
,
M.
, and
Goodson
,
K. E.
,
2011
, “
Hydraulic and Thermal Characteristics of a Vapor Venting Two-Phase Microchannel Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
54
(25–26), pp.
5504
5516
.
30.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2009
, “
Measurement and Prediction of Pressure Drop in a Two-Phase Micro-Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
52
(21–22), pp.
5173
5184
.
31.
David
,
T.
,
Mendler
,
D.
,
Mosyak
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
Thermal Management of Time-Varying High Heat Flux Electronic Devices
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021003
.
32.
Kureta
,
M.
, and
Akimoto
,
H.
,
2002
, “
Critical Heat Flux Correlation for Subcooled Boiling Flow in Narrow Channels
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4107
4115
.
33.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2005
, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1106
1114
.
34.
Zhang
,
X.
,
Han
,
X.
,
Sarvey
,
T. E.
,
Green
,
C. E.
,
Kottke
,
P. A.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
, and
Bakir
,
M.
,
2015
, “
3D IC With Embedded Microfluidic Cooling: Technology, Thermal Performance, and Electrical Implications
,”
ASME 13th International Conference on Nanochannels, Microchannels, and Minichannels (InterPACK/ICNMM2015)
, San Francisco, CA, July 6–9.
35.
Tong
,
X.
,
2011
, “
Liquid Cooling Devices and Their Materials Selection
,”
Advanced Materials for Thermal Management of Electronic Packaging
, Vol.
30
,
Springer
,
New York
, pp.
421
475
.
36.
Kottke
,
P.
,
Yun
,
T. M.
,
Green
,
C. E.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2016
, “
Two Phase Convective Cooling for Ultra-High Power Dissipation in Microprocessors
,”
ASME J. Heat Transfer
,
138
, p.
011501
.
37.
Megahed
,
A.
, and
Hassan
,
I.
,
2009
, “
Two-Phase Pressure Drop and Flow Visualization of FC-72 in a Silicon Microchannel Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1171
1182
.
38.
Chen
,
T.
, and
Garimella
,
S. V.
,
2006
, “
Measurements and High-Speed Visualizations of Flow Boiling of a Dielectric Fluid in a Silicon Microchannel Heat Sink
,”
Int. J. Multiphase Flow
,
32
(
8
), pp.
957
971
.
39.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2009
, “
Flow Boiling of Coolant (HFE-7000) Inside Structured and Plain Wall Microchannels
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121011
.
40.
Lee
,
J.
, and
Mudawar
,
I.
,
2009
, “
Experimental Investigation and Theoretical Model for Subcooled Flow Boiling Pressure Drop in Microchannel Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
3
), p.
031008
.
41.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part II: Heat Transfer Characteristics of Refrigerant R245fa
,”
Int. J. Heat Mass Transfer
,
51
(21–22), pp.
5415
5425
.
42.
Isaacs
,
S.
,
Kim
,
Y. J.
,
McNamara
,
A. J.
,
Joshi
,
Y.
,
Zhang
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
Two-Phase Flow and Heat Transfer in Pin-Fin Enhanced Micro-Gaps
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
1084
1089
.
43.
Madhour
,
Y.
,
Olivier
,
J.
,
Costa-Patry
,
E.
,
Paredes
,
S.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Flow Boiling of R134a in a Multi-Microchannel Heat Sink With Hotspot Heaters for Energy-Efficient Microelectronic CPU Cooling Applications
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
6
), pp.
873
883
.
44.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part I: Heat Transfer Characteristics of Refrigerant R236fa
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5400
5414
.
45.
Dong
,
T.
,
Yang
,
Z.
,
Bi
,
Q.
, and
Zhang
,
Y.
,
2008
, “
Freon R141b Flow Boiling in Silicon Microchannel Heat Sinks: Experimental Investigation
,”
Heat Mass Transfer
,
44
(3), pp.
315
324
.
46.
Bolaji
,
B. O.
, and
Huan
,
Z.
,
2013
, “
Ozone Depletion and Global Warming: Case for the Use of Natural Refrigerant—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
49
54
.
47.
Szymurski
,
S. R.
,
Hourahan
,
G. C.
, and
Godwin
,
D. S.
,
1993
, “
Materials Compatibility and Lubricants Research on CFC-Refrigerant Substitutes
,”
Quarterly MCLR Program Technical Progress Report, U.S. Department of Energy, Washington, DC, Report No. DOE/CE/23810-8, available at: http://www.osti.gov/scitech/servlets/purl/7076439-wca8qF/
48.
Cheng
,
L.
, and
Thome
,
J. R.
,
2009
, “
Cooling of Microprocessors Using Flow Boiling of CO2 in a Micro-Evaporator: Preliminary Analysis and Performance Comparison
,”
Appl. Therm. Eng.
,
29
(11–12), pp.
2426
2432
.
49.
Lin
,
P.
,
Fu
,
B.
, and
Pan
,
C.
,
2011
, “
Critical Heat Flux on Flow Boiling of Methanol–Water Mixtures in a Diverging Microchannel With Artificial Cavities
,”
Int. J. Heat Mass Transfer
,
54
(15–16), pp.
3156
3166
.
50.
Hanks
,
D. F.
,
Zhengmao
,
L.
,
Narayanan
,
S.
,
Bagnall
,
K. R.
,
Raj
,
R.
,
Rong
,
X.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2014
, “
Nanoporous Evaporative Device for Advanced Electronics Thermal Management
,”
IEEE Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 27–30, pp.
290
295
.
51.
Ribatski
,
G.
,
Zhang
,
W.
,
Consolini
,
L.
,
Xu
,
J.
, and
Thome
,
J. R.
,
2007
, “
On the Prediction of Heat Transfer in Micro-Scale Flow Boiling
,”
Heat Transfer Eng.
,
28
(
10
), pp.
842
851
.
52.
Klein
,
S.
, and
Alvarado
,
F.
,
2002
, “
Engineering Equation Solver
,”
F-Chart Software
,
Madison, WI
.
53.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.
54.
Kim
,
D. W.
,
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Han
,
B.
,
2008
, “
Thermofluid Characteristics of Two-Phase Flow in Micro-Gap Channels
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2008
), Orlando, FL, May 28–31, pp.
979
992
.
55.
Warrier
,
P.
,
Sathyanarayana
,
A.
,
Patil
,
D. V.
,
France
,
S.
,
Joshi
,
Y.
, and
Teja
,
A. S.
,
2012
, “
Novel Heat Transfer Fluids for Direct Immersion Phase Change Cooling of Electronic Systems
,”
Int. J. Heat Mass Transfer
,
55
(13–14), pp.
3379
3385
.
56.
Lazarek
,
G. M.
, and
Black
,
S. H.
,
1982
, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
,
25
(
7
), pp.
945
960
.
57.
Tran
,
T.
,
Wambsganss
,
M.
, and
France
,
D.
,
1996
, “
Small Circular- and Rectangular-Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
485
498
.
58.
Dang
,
B.
,
Bakir
,
M. S.
, and
Meindl
,
J. D.
,
2006
, “
Integrated Thermal-Fluidic I/O Interconnects for an On-Chip Microchannel Heat Sink
,”
IEEE Electron. Device Lett.
,
27
(
2
), pp.
117
119
.
59.
King
,
C. R.
,
Sekar
,
D.
,
Bakir
,
M. S.
,
Dang
,
B.
,
Pikarsky
,
J.
, and
Meindl
,
J. D.
,
2008
, “
3D Stacking of Chips With Electrical and Microfluidic I/O Interconnects
,”
58th Electronic Components and Technology Conference
(
ECTC 2008
), Lake Buena Vista, FL, May 27–30.
60.
King
,
C. R.
, Jr.
,
Zaveri
,
J.
,
Bakir
,
M. S.
, and
Meindl
,
J. D.
,
2010
, “
Electrical and Fluidic C4 Interconnections for Inter-Layer Liquid Cooling of 3D ICs
,”
60th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 1–4, pp.
1674
1681
.
61.
Oh
,
H.
,
Zhang
,
Y.
,
Zheng
,
L.
, and
Bakir
,
M. S.
,
2014
, “
Electrical Interconnect and Microfluidic Cooling Within 3D ICs and Silicon Interposer
,”
ASME
Paper No. ICNMM2014-21813.
62.
Zheng
,
L.
,
Zhang
,
Y.
,
Huang
,
G.
, and
Bakir
,
M. S.
,
2014
, “
Novel Electrical and Fluidic Microbumps for Silicon Interposer and 3-D ICs
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
5
), pp.
777
785
.
63.
Green
,
C. E.
,
Kottke
,
P. A.
,
Sarvey
,
T. E.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2015
, “
Performance and Integration Implications of Addressing Localized Hotspots Through Two Approaches: Clustering of Micro Pin Fins and Dedicated Microgap Coolers
,”
ASME 13th International Conference on Nanochannels, Microchannels, and Minichannels (InterPACK/ICNMM2015), San Francisco, CA
, July 6–9.
64.
Woodrum
,
D. C.
,
Sarvey
,
T.
,
Bakir
,
M. S.
, and
Sitaraman
,
S. K.
,
2015
, “
Reliability Study of Micro-Pin Fin Array for On-Chip Cooling
,”
IEEE 65th Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 26–29, pp.
2283
2287
.
You do not currently have access to this content.