A microchannel heat sink shape optimization has been performed using response surface approximation. Three design variables related to microchannel width, depth, and fin width are selected for optimization, and thermal resistance has been taken as objective function. Design points are chosen through a three-level fractional factorial design of sampling methods. Navier–Stokes and energy equations for steady, incompressible, and laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with the analytical and experimental results and the values of objective function are calculated at the specified design points. Using the numerically evaluated objective-function values, a polynomial response surface model is constructed and the optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of the microchannel heat sink by decreasing thermal resistance of about 12% of the reference shape. Sensitivity of objective function to design variables has been studied to utilize the substrate material efficiently.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
(
5
), pp.
126
129
.
2.
Kawano
,
K.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 1998, “
Development of Micro Channels Heat Exchanging
,”
Application of Heat Transfer in Equipment Systems, and Education
,
R. A.
Nelson
Jr.
,
L. W.
Swanson
,
M. V. A.
Bianchi
, and
C.
Camci
, eds.,
ASME
,
New York
, pp.
173
180
, Paper No. HTD-361-3/PID-3.
3.
Rahman
,
M. M.
, and
Gui
,
F.
, 1993, “
Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel Cooling Passages in a Chip Substrate
,”
Advances in Electronic Packaging: Thermal Management, Solder Technology, and Optoelectronic Packaging
, ASME EEP-Vol.
4-2
, pp.
685
692
.
4.
Rahman
,
M. M.
, and
Gui
,
F.
, 1993, “
Design Fabrication and Testing of Microchannel Heat Sink for Aircraft Avionics Cooling
,”
Proceedings of the 28th Intersociety Energy Conversion Engineering Conference
, Vol.
1
, pp.
1
6
.
5.
Qu
,
W.
,
Mala
,
Gh. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
3
), pp.
353
364
.
6.
Qu
,
W.
,
Mala
,
Gh. M.
, and
Li
,
D.
, 2000, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
21
), pp.
3925
3936
.
7.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2519
2525
.
8.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2547
2556
.
9.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
, 2003, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
1049-0787,
13
, pp.
1
50
.
10.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
1290-0729,
43
(
7
), pp.
631
651
.
11.
Yener
,
Y.
,
Kakac
,
S.
,
Avelino
,
M.
, and
Okutucu
,
T.
, 2005, “
Single-Phase Forced Convection in Microchannels: A State-of-the-Art-Review
,”
Microscale Heat Transfer: Fundamentals and Applications
,
S.
Kakac
,
L. L.
Vasiliev
,
Y.
Bayazitoglu
, and
Y.
Yener
, eds.,
Springer
,
Netherlands
, pp.
1
24
.
12.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
(
5
), pp.
832
842
.
13.
Wei
,
X.
, and
Joshi
,
Y.
, 2003, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
55
61
.
14.
Fisher
,
T. S.
, and
Torrance
,
K. E.
, 2001, “
Optimal Shapes of Fully Embedded Channels for Conjugate Cooling
,”
IEEE Trans. Adv. Packag.
1521-3323,
24
(
4
), pp.
555
562
.
15.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
19
), pp.
3973
3985
.
16.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
, 2002, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
26
), pp.
5133
5141
.
17.
Liu
,
D.
, and
Garimella
,
S. V.
, 2005, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
1
), pp.
7
26
.
18.
Li
,
J.
, and
Peterson
,
G. P.
, 2006, “
Geometric Optimization of a Micro Heat Sink With Liquid Flow
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
29
(
1
), pp.
145
154
.
19.
Husain
,
A.
, and
Kim
,
K. -Y.
, 2008, “
Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
322
330
. 1521-3331
20.
Vanderplaats
,
G. N.
, 1984,
Numerical Optimization Techniques for Engineering Design: With Applications
,
McGraw-Hill
,
New York
.
21.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
0376-0421,
41
(
1
), pp.
1
28
.
22.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
23.
The Math Works, Inc.
, 2004, MATLAB®, The Language of Technical Computing, Release 14, Version 7.
24.
ANSYS Europe Ltd.
, 2005, CFX-10.0, Solver Theory.
25.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
, pp.
124
134
.
26.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, Supplement 1
,
Academic
,
New York
.
27.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, 1987,
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
28.
Giunta
,
A. A.
, 1997, “
Aircraft Multidisciplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods
,” Ph.D. thesis, Department of Aerospace Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.
29.
Kawano
,
K.
,
Sekimura
,
M.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 2001, “
Development of Micro Channel Heat Exchanging
,”
JSME Int. J., Ser. B
1340-8054,
44
(
4
), pp.
592
598
.
You do not currently have access to this content.