Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nuf(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L2)(DhRePr), as the independent parameter. Results show that Nu1L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.

1.
Nottage
,
H. B.
, 1945, “
Efficiency of Extended Surface
,”
Trans. ASME
0097-6822,
67
, pp.
621
631
.
2.
Teertstra
,
P.
,
Yovanovich
,
M. M.
,
Culham
,
J. R.
, and
Lemczyk
,
T.
, 1999, “
Analytical Forced Convection Modeling of Plate Fin Heat Sinks
,”
Proc. Fifteenth Semi-Therm Symposium
, pp.
34
41
.
3.
Copeland
,
D.
, 2000, “
Optimization of Parallel Plate Heat Sinks for Forced Convection
,”
Proc. Sixteenth Semi-Therm Symposium
, pp.
266
272
.
4.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
5.
Biskeborn
,
R. G.
,
Horvath
,
J. L.
, and
Hultmark
,
E. B.
, 1984, “
Integral Cap Heat Sink Assembly for IBM 4381 Processor
,”
Proc. International Electronics Packaging Conference
, pp.
468
474
.
6.
Sparrow
,
E. M.
,
Stryker
,
P. C.
, and
Altemani
,
A. C.
, 1985, “
Heat Transfer and Pressure Drop in Flow Passages That Are Open Along Their Lateral Edges
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
4
), pp.
731
740
.
7.
Hilbert
,
C.
,
Sommerfeldt
,
S.
,
Gupta
,
O.
, and
Herrell
,
D. J.
, 1990, “
High Performance Micro-Channel Air Cooling
,”
Proc. 6th IEEE Semiconductor Thermal and Temperature Measurement Symposium
,
Scottsdale, Arizona
, pp.
108
113
.
8.
Sathe
,
S. B.
,
Sammakia
,
B. G.
,
Wong
,
A. C.
, and
Mahaney
,
H. V.
, 1995, “
A Numerical Study of A High Performance Air Cooled Impingement Heat Sink
,”
Proc. ASME HTD—Vol. 303, 1995 National Heat Transfer Conference
,
Portland, OR
, Vol.
1
, pp.
43
54
.
9.
Copeland
,
D.
, 1995, “
Manifold Microchannel Heat Sinks: Numerical Analysis
,”
Proc. ASME HTD—Vol. 319/EEP Vol. 15, Cooling and Thermal Design of Electronic Systems
, pp.
111
116
.
10.
Kang
,
S. S.
, and
Holahan
,
M. F.
, 1995, “
Impingement Heat Sinks for Air Cooled High Power Electronic Modules
,”
Proc. ASME HTD—Vol. 303, 1995 National Heat Transfer Conference
,
Portland, OR
, Vol.
1
, pp.
139
146
.
11.
Holahan
,
M. F.
,
Kang
,
S. S.
, and
Bar-Cohen
,
A.
, 1996, “
A Flowstream Based Analytical Model for Design of Parallel Plate Heatsinks
,”
Proc. ASME HTD—Vol. 329, National Heat Transfer Conference
, Vol.
7
, pp.
63
71
.
12.
Kondo
,
Y.
, and
Matsuhima
,
H.
, 1996, “
Study of Impingement Cooling of Heat Sinks for LSI Packages With Longiudinal Fins
,”
Heat Transfer-Jpn. Res.
0096-0802,
25
(
8
), pp.
537
553
.
13.
Sathe
,
S. B.
,
Kelkar
,
K. M.
,
Karki
,
K. C.
,
Tai
,
C.
,
Lami
,
C.
, and
Patankar
,
S. V.
, 1997, “
Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
119
(
1
), pp.
58
63
.
14.
Biber
,
C. R.
, 1997, “
Pressure Drop and Heat Transfer in an Isothermal Channel With Impinging Flow
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
(
4
), pp.
458
462
.
15.
Sasao
,
K.
,
Honma
,
M.
,
Nishihara
,
A.
, and
Atarashi
,
T.
, 1999, “
Numerical Analysis of Impinging Air Flow And Heat Transfer in Plate Fin Type Heat Sinks
,”
Proc. ASME EEP—Vol. 26-1, Advances in Electronic Packaging
, Vol.
1
, pp.
493
499
.
16.
Saini
,
M.
, and
Webb
,
R. L.
, 2002, “
Validation of Models for Air Cooled Plane Fin Heat Sinks Used in Computer Cooling
,”
Proc. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
San Diego, CA
, pp.
243
250
.
17.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
, 2004, “
Impingement Air Cooled Plate Fin Heat Sinks: Part II Thermal Resistance Model
,”
Proc. Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, pp.
436
443
.
18.
Lee
,
S.
,
Song
,
S.
,
Au
,
V.
, and
Moran
,
K. P.
, 1995, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
Proc. ASME/JSME Thermal Engineering Conference
, Vol.
4
, pp.
199
206
.
19.
Yovanovich
,
M. M.
,
Culham
,
J. R.
, and
Teertstra
,
P.
, 1998, “
Analytical Modeling of Spreading Resistance in Flux Tubes, Half Spaces, and Compound Disks
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
21
(
1
), pp.
168
176
.
20.
Yovanovich
,
M. M.
,
Muzychka
,
Y. S.
, and
Culham
,
J. R.
, 1999, “
Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Channels
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
495
500
.
21.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
22.
Holman
,
J. P.
, 1994,
Experimental Methods for Engineers
, 6th ed.,
McGraw-Hill
,
New York
.
23.
Duan
,
Z. P.
, 2003, “
Impingement Air Cooled Plate Fin Heat Sinks
,” M.Eng. thesis, Memorial University of Newfoundland, St. Johns.
You do not currently have access to this content.