Use of microtubular design in solid oxide fuel cells is considered to be ideal for small power application up to kW scale since it has shown to have high thermal shock resistance and high electrode area per volume, resulting in high volumetric power density. In this study, using a form of microtubular, NiO-Fe2O3 based material has been used as an anode material and investigated the microstructure and the fuel cell performance.

References

1.
Minh
,
N. Q.
, 1993, “
Ceraminc Fuel-Cells
,”
J. Am. Ceram. Soc.
,
78
, pp.
563
588
.
2.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
,
45
, pp.
2423
2435
.
3.
Singhal
,
S. C.
, 2002, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
,
152
, pp.
405
410
.
4.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
, pp.
345
352
.
5.
Yokokawa
,
H.
,
Sakai
,
N.
,
Horita
,
T.
,
Yamaji
,
K.
, and
Brito
,
M. E.
, 2005, “
Electrolytes for Solid-Oxide Fuel Cells
,”
MRS Bull.
,
30
, pp.
591
595
.
6.
Yan
,
J. W.
,
Matsumoto
,
H.
,
Enoki
,
M.
, and
Ishihara
,
T.
, 2005, “
High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3-δ/ Ce0.8Sm0.2O2-δ Composite Film
,”
Electrochem. Solid-State Lett.
,
8
, pp.
A389
A391
.
7.
Shao
,
Z. P.
, and
Haile
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature
,
431
, pp.
170
173
.
8.
Tao
,
S. W.
, and
Irvine
,
J. T. S.
, 2003, “
A Redox-Stable Efficient Anode for Solid-Oxide Fuel Cells
,”
Nature Mater.
,
2
, pp.
320
323
.
9.
Eguchi
,
K.
,
Setoguchi
,
T.
,
Inoue
,
T.
, and
Arai
,
H.
, 1992, “
Electrical-Properties of Ceria-Based Oxides and Their Application to Solid Oxide Fuel-Cells
,”
Solid State Ionics
,
52
, pp.
165
172
.
10.
Hibino
,
T.
,
Hashimoto
,
A.
,
Asano
,
K.
,
Yano
,
M.
,
Suzuki
,
M.
, and
Sano
,
M.
, 2002, “
An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance With Hydrocarbons Than With Hydrogen
,”
Electrochem. Solid-State Lett.
,
5
, pp.
A242
A244
.
11.
Huang
,
H.
,
Nakamura
,
M.
,
Su
,
P.
,
Fasching
,
R.
,
Saito
,
Y.
, and
Prinz
,
F. B.
, 2007, “
High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation
,”
J. Electrochem. Soc.
,
154
, pp.
B20
B24
.
12.
Sammes
,
N. M.
,
Du
,
Y.
, and
Bove
,
R.
, 2005, “
Design and Fabrication of a 100 W Anode Supported Micro-Tubular SOFC Stack
,”
J. Power Sources
,
145
, pp.
428
434
.
13.
Kendall
,
K.
, and
Palin
,
M.
, 1998, “
A Small Solid Oxide Fuel Cell Demonstrator for Microelectronic Applications
,”
J. Power Sources
,
71
, pp.
268
270
.
14.
Yashiro
,
K.
,
Yamada
,
N.
,
Kawada
,
T.
,
Hong
,
J.
,
Kaimai
,
A.
,
Nigara
,
Y.
, and
Mizusaki
,
J.
, 2002, “
Demonstration and Stack Concept of Quick Startup/Shutdown SOFC (qSOFC)
,”
Electrochemistry
,
70
, pp.
958
960
.
15.
Suzuki
,
T.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Design and Fabrication of Lightweight, Submillimeter Tubular Solid Oxide Fuel Cells
,”
Electrochem. Solid-State Lett.
,
10
, pp.
A177
A179
.
16.
Suzuki
,
T.
,
Zahir
,
M. H.
,
Funahashi
,
Y.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2009, “
Impact of Anode Microstructure on Solid Oxide Fuel Cells
,”
Science
,
325
, pp.
852
855
.
17.
Yamaguchi
,
T.
,
Shimizu
,
S.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2008, “
Fabrication and Characterization of High Performance Cathode Supported Small-Scale SOFC for Intermediate Temperature Operation
,”
Electrochem. Commun.
,
10
, pp.
1381
1383
.
18.
Suzuki
,
T.
,
Yamaguchi
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2007, “
Current Collecting Efficiency of Micro Tubular SOFCs
,”
J. Power Sources
,
163
, pp.
737
742
.
19.
Ju
,
Y. W.
,
Eto
,
H.
,
Inagaki
,
T.
,
Ida
,
S.
, and
Ishihara
,
T.
, “
Preparation of Ni–Fe Bimetallic Porous Anode Support for Solid Oxide Fuel Cells Using LaGaO3 Based Electrolyte Film With High Power Density
,”
J. Power Sources
,
195
, pp.
6294
6300
.
You do not currently have access to this content.