A previously developed microstructure model of a solid oxide fuel cell (SOFC) electrode-electrolyte interface has been applied to study the impacts of particle properties on these interfaces through the use of a Monte Carlo simulation method. Previous findings that have demonstrated the need to account for gaseous phase percolation have been confirmed through the current investigation. In particular, the effects of three-phase percolation critically affect the dependence of TPB formation and electrode conductivity on (1) conducting phase particle size distributions, (2) electronic:ionic conduction phase contrast, and (3) the amount of mixed electronic-ionic conductor (MEIC) included in the electrode. In particular, the role of differing percolation effectiveness between electronic and ionic phases has been shown to counteract and influence the role of the phase contrast. Porosity, however, has been found to not be a significant factor for active TPB formation in the range studied, but does not obviate the need for modeling the gas phase. In addition, the current work has investigated the inconsistencies in experimental literature results concerning the optimal particle size distribution. It has been found that utilizing smaller particles with a narrow size distribution is the preferable situation for electrode-electrolyte interface manufacturing. These findings stress the property-function relationships of fuel cell electrode materials.

References

1.
Sunde
,
S.
, 1995,
“Calculation of Conductivity and Polarization Resistance of Composite SOFC Electrodes From Random Resistor Networks,”
J. Electrochem. Soc.,
142
, pp.
L50
L52
.
2.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
, 1998,
“Micro-Modeling of Solid Oxide Fuel Cell Electrodes,”
Electrochim. Acta
,
43
, pp.
375
394
.
3.
Martinez
,
A.
, and
Brouwer
,
J.
, 2008,
“Percolation Modeling Investigation of TPB Formation in a Solid Oxide Fuel Cell Electrode-Electrolyte Interface,”
Electrochim. Acta
,
53
(
10
), pp.
3597
3609
.
4.
Martinez
,
A.
, and
Brouwer
,
J.
, 2010, “
Modeling and Comparison to Literature Data of Composite Solid Oxide Fuel Cell Electrode-Electrolyte Interface Conductivity
,” J. Power Sources (in press).
5.
Schneider
,
L. C. R.
,
Martin
,
C. L.
,
Bultel
,
Y.
,
Dessemeond
,
L.
, and
Bouvard
,
D.
, 2007,
“Percolation Effects In Functionally Graded SOFC Electrodes,”
Electrochim. Acta
,
52
, pp.
3190
3198
.
6.
Deseure
,
J.
,
Bultel
,
Y.
,
Dessemond
,
L.
, and
Siebert
,
E.
, 2005,
“Theoretical Optimisation of a SOFC Composite Cathode,”
Electrochim. Acta
,
50
, pp.
2037
2046
.
7.
Sunde
,
S.
, 1996,
“Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells,”
J. Electrochem. Soc.
,
143
, pp.
1930
1939
.
8.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C.W.
, and
Kim
,
J.-W.
, 2000,
“The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells,”
Solid State Ionics
,
131
, pp.
189
198
.
9.
Tietz
,
F.
,
Buchkremer
,
H.-P.
, and
Stover
,
D.
, 2002, “
Components Manufacturing for Solid Oxide Fuel Cells
,”
Solid State Ionics
, pp.
152
–153, 373–
381
.
10.
Savignat
,
S. B.
,
Chiron
,
M.
, and
Barthet
,
C.
, 2007,
“Tape Casting of New Electrolyte and Anode Materials for SOFCs Operated at Intermediate Temperature,”
J. Eur. Ceram. Soc.
,
27
, pp.
673
678
.
11.
Li
,
C.-J.
,
Li
,
C.-X.
, and
Wang
,
M.
, 2005,
“Effect of Spray Parameters on the Electrical Conductivity of Plasma-Sprayed La1xSrxMnO3 Coating for the Cathode of SOFCs,”
Surf. Coat. Technol.
,
198
, pp.
278
282
.
12.
Ge
,
X.
,
Huang
,
X.
,
Zhang
,
Y.
,
Lu
,
Z.
,
Xu
,
J.
,
Chen
,
K.
,
Dong
,
D.
,
Liu
,
Z.
,
Miao
,
J.
, and
Su
,
W.
, 2006,
“Screen-Printed Thin YSZ Films Used as Electrolytes for Solid Oxide Fuel Cells,”
J. Power Sources
,
159
, pp.
1048
1050
.
13.
Zheng
,
R.
,
Zhou
,
X. M.
,
Wang
,
S. R.
,
Wen
,
T.-L.
, and
Ding
,
C. X.
, 2004,
“A Study of Ni+8YSZ/8YSZ/La0.6Sr0.4CoO3δ ITSOFC Fabricated by Atmospheric Plasma Spraying,”
J. Power Sources
,
140
, pp.
217
225
.
14.
van Dieten
,
V. E. J.
, and
Schoonman
,
J.
, 1991,
“Thin Film Techniques for Solid Oxide Fuel Cells,”
Solid State Ionics
,
57
, pp.
141
145
.
15.
Wang
,
H. B.
,
Song
,
H. Z.
,
Xia
,
C. R.
,
Peng
,
D. K.
, and
Meng
,
G. Y.
, 2000,
“Aerosol-Assisted MOCVD Deposition of YDC Thin Films on (NiO+YDC) Substrates,”
Mater. Res. Bull.
,
35
, pp.
2363
2370
.
16.
Meng
,
G.
,
Song
,
H.
,
Dong
,
Q.
, and
Peng
,
D.
, 2004,
“Application of Novel Aerosol-Assisted Chemical Vapor Deposition Techniques for SOFC Thin Films,”
Solid State Ionics
,
175
, pp.
29
34
.
17.
Juhl
,
M.
,
Primdahl
,
S.
,
Manon
,
C.
, and
Mogensen
,
M.
, 1996,
“Performance/Structure Correlation for Composite SOFC Cathodes,”
J. Power Sources
,
61
, pp.
173
181
.
18.
Sasaki
,
K.
,
Wurth
,
J. P.
,
Gschwend
,
R.
,
Godickemeier
,
M.
, and
Gauckler
,
L. J.
,
“Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors,”
J. Electroch. Soc.
,
143
, pp.
530
543
(1996).
19.
van Heuveln
,
F. H.
,
Vanberkel
,
F. P. F.
, and
Huijsmans
,
I. P. P.
, 1993, “
Characterization of Solid Oxide Fuel-Cell Electrodes by Impedance Spectroscopy and IV-Characteristics
,”
High Temperature Electrochemical Behavior of Fast Ion and Mixed Conductors, Proceedings of the 14th Risø International Symposium on Material Science
,
F. W.
Poulsen
,
J. J.
Bentzen
,
T.
Jacobsen
,
T.
Skou
, and
M. J. L.
Østergård
, eds., RISØ, Roskilde, p.
53
.
20.
Dusastre
,
V.
, and
Kilner
,
J. A.
, 1999,
“Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications,”
Solid State Ionics
,
126
, pp.
163
174
.
21.
Ostergard
,
M. J. L.
,
Clausen
,
C.
,
Bagger
,
C.
, and
Mogensen
,
M.
, 1995, “
Manganite-Zirconia Composite Cathodes for SOFC: Influence of Structure and Composition
,”
Electrochim. Acta
,
40
, pp.
1971
1981
.
22.
Adler
,
S.B.
, 2004,
“Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes,”
Chem. Rev.
,
104
, pp.
4791
4843
.
23.
Fogelholm
,
R.
, 1980,
“The Conductivity of Large Percolation Network Samples,”
J. Phys. C
,
13
, pp.
L571
L574
.
24.
Fogelholm
,
R.
, 1980, An Elimination Method for the Conductance of Percolation Networks, Stockholm, Royal Institute of Technology.
25.
Fogelholm
,
R.
, 1981, “
Computation for Conductance Distributions of Percolation Lattice Cells
,”
Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computation
.
You do not currently have access to this content.