This work presents direct numerical simulations of two-phase flows in fuel cell minichannels. Different two-phase flow configurations can be observed in such minichannels, which depend on gas-flow rate, liquid holdup, and wettability of each wall. These flows are known to have a significant impact on the fuel cell’s performance. The different two-phase flow configurations must be studied specially concerning the prediction of the transition among them. In the fuel cell minichannels, experimental investigations are difficult to perform because of the small size of the device and the difficult control of the wettability properties of the walls. In such systems, numerical approach can provide useful information with a perfect control of the flow characteristics, particularly for the wettability aspect. The numerical code used in this study is the JADIM code developed at IMFT, which is based on a “volume of fluid” method for interface capturing without any interface reconstruction. The numerical description of the surface tension is one of the crucial points in studying such systems where capillary effects control the phase distribution. The static and the dynamics of the triple line between the liquid, the gas, and the wall is also an essential physical mechanism to consider. The numerical implementation of this model is validated in simple situations where analytical solutions are available for the shape and the pressure jump at the interface. In this paper we present the characteristics of the JADIM code and its potential for the studies of the fuel cell internal flows. Numerical simulations on the two-phase flows on walls, in corners, and inside channels are shown.

1.
Marchand
,
M.
, 1998, “
Gestion de l’eau dans les piles à combustible
,” Ph.D. thesis, INP Grenoble, France.
2.
Tuber
,
K.
,
Pocza
,
D.
, and
Hebling
,
C. J.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
, pp.
403
414
.
3.
Yang
,
X. G.
,
Zhang
,
F. Y.
,
Lubawy
,
A. L.
, and
Wang
,
C. Y.
, 2004, “
Visualization of Liquid Water Transport in a PEFC
,”
Electrochem. Solid-State Lett.
1099-0062,
7
(
11
), pp.
A408
A411
.
4.
Quan
,
P.
,
Zhou
,
B.
,
Sobiesiak
,
A.
, and
Liu
,
Z.
, 2005, “
Water Behavior in Serpentine Micro-Channel for Proton Exchange Membrane Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
152
, pp.
131
145
.
5.
Suo
,
M.
, and
Griffith
,
P.
, 1964, “
Two-Phase Flow in Capillary Tubes
,”
ASME J. Basic Eng.
0021-9223,
86
, pp.
576
582
.
6.
Coleman
,
J. W.
, and
Garimella
,
S.
, 1999, “
Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes
,”
Int. J. Multiphase Flow
0301-9322,
42
, pp.
2869
2881
.
7.
Xu
,
J. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 1999, “
Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels With Mini/Micro Gaps
,”
Int. J. Multiphase Flow
0301-9322,
25
, pp.
411
432
.
8.
Yang
,
C. -Y.
, and
Shieh
,
C. -C.
, 2001, “
Flow Pattern of Air-Water and Two-Phase R-134a in Small Circular Tubes
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
1163
1177
.
9.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowsli
,
D. L.
, 1999, “
Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
0301-9322,
25
, pp.
377
394
.
10.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2003, “
Two-Phase Flow Regimes in Round, Square and Rectangular Tubes During Condensation of Refrigerant R134a
,”
Int. J. Refrig.
0140-7007,
26
, pp.
117
128
.
11.
Barajas
,
A. M.
, and
Panton
,
R. L.
, 1993, “
The Effects of Contact Angle on Two-Phase Flow in Capillary Tubes
,”
Int. J. Multiphase Flow
0301-9322,
19
(
2
), pp.
337
346
.
12.
Morgante
,
A. M.
, and
Fabre
,
J.
, 2005, “
Two-Phase Flow in Square Mini-Channels: Flow Pattern Transition
,”
Third International Conference on Microchannels and Minichannels
, Toronto, ON, Canada.
13.
Golpaygan
,
A.
, and
Ashgriz
,
N.
, 2005, “
Effects of Oxidant Fluid Properties on the Mobility of Water Droplets in the Channels of PEM Fuel Cell
,”
Int. J. Energy Res.
0363-907X,
29
, pp.
1027
1040
.
14.
Legendre
,
D.
, and
Magnaudet
,
J.
, 1998, “
The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow
,”
J. Fluid Mech.
0022-1120,
368
, pp.
81
126
.
15.
Legendre
,
D.
,
Magnaudet
,
J.
, and
Mougin
,
G.
, 2003, “
Hydrodynamic Interaction Between Two Spherical Bubbles Rising Side by Side in a Liquid
,”
J. Fluid Mech.
0022-1120,
497
, pp.
133
166
.
16.
Merle
,
A.
,
Legendre
,
D.
, and
Magnaudet
,
J.
, 2005, “
Forces on a High-Re Spherical Bubble in a Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
532
, pp.
53
62
.
17.
Benkénida
,
A.
, and
Magnaudet
,
J.
, 2000, “
Une Méthode de Simulation D’écoulements Diphasiques sans Reconstruction D’interface
,”
C. R. Acad. Sci.
,
328
, pp.
25
32
.
18.
Bonometti
,
T.
, 2005, “
Développement d’une méthode de simulation d’écoulements à bulles et à gouttes
,” Ph.D. thesis, INP Toulouse, France.
19.
Zalesak
,
S. T.
, 1979, “
Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids
,”
J. Comput. Phys.
0021-9991,
31
, pp.
335
362
.
20.
Brackbill
,
J.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
21.
Scardovelli
,
R.
, and
Zaleski
,
S.
, 1999, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
567
603
.
22.
Amestoy
,
P. R.
,
Duff
,
L. S.
, and
L’Excellent
,
J. -Y.
, 2000, “
Multifrontal Parallel Distributed Symmetric and Unsymmetric Solvers
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
184
, pp.
501
520
.
23.
Azaiez
,
M.
,
Bergeon
,
A.
, and
Plouraboué
,
F.
, 2003, “
Un Nouveau Préconditionneur Pour les Problèmes Elliptiques à Coefficients Variables
,”
C. R. Acad. Sci.
,
331
(
7
), pp.
509
514
.
24.
Charru
,
F.
, and
Fabre
,
J.
, 1994, “
Long Waves at the Interface Between Two Viscous Fluids
,”
Phys. Fluids
1070-6631,
6
(
3
), pp.
1223
1235
.
You do not currently have access to this content.