It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion®, require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in bulk. In this paper, experimental data combined with theoretical simulations that explore the existence and impact of interfacial resistance on water transport for Nafion®21x membranes will be presented. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel cell performance.

1.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Modeling Transport in Polymer-Electrolyte Fuel Cells
,”
Chem. Rev.
0009-2665,
104
(
10
), pp.
4679
4726
.
2.
Zawodzinski
,
T. A.
, Jr.
,
Gottesfeld
,
S.
,
Shoichet
,
S.
, and
Mccarthy
,
T. J.
, 1993, “
The Contact Angle Between Water and the Surface of Perfluorosulphonic Acid Membranes
,”
J. Appl. Electrochem.
0021-891X,
23
, pp.
86
88
.
3.
Van Nguyen
,
T.
,
Nguyen
,
M. V.
,
Nordheden
,
K. J.
, and
He
,
W.
, 2007, “
Effect of Bulk and Surface Treatments on the Surface Ionic Activity of Nafion Membranes
,”
J. Electrochem. Soc.
0013-4651,
154
(
11
), pp.
A1073
A1076
.
4.
McLean
,
R. S.
,
Doyle
,
M.
, and
Sauer
,
B. B.
, 2000, “
High-Resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques
,”
Macromolecules
0024-9297,
33
(
17
), pp.
6541
6550
.
5.
Aleksandrova
,
E.
,
Hiesgen
,
R.
,
Friedrich
,
K. A.
, and
Roduner
,
E.
, 2007, “
Electrochemical Atomic Force Microscopy Study of Proton Conductivity in a Nafion Membrane
,”
Phys. Chem. Chem. Phys.
1463-9076,
9
(
21
), pp.
2735
2743
.
6.
Takimoto
,
N.
,
Wu
,
L.
,
Ohira
,
A.
,
Takeoka
,
Y.
, and
Rikukawa
,
M.
, 2009, “
Hydration Behavior of Perfluorinated and Hydrocarbon-Type Proton Exchange Membranes: Relationship Between Morphology and Proton Conduction
,”
Polymer
0032-3861,
50
(
2
), pp.
534
540
.
7.
Van Nguyen
,
T.
,
Nguyen
,
M. V.
,
Lin
,
G. Y.
,
Rao
,
N. X.
,
Xie
,
X.
, and
Zhu
,
D. M.
, 2006, “
Characterization of Surface Ionic Activity of Proton Conductive Membranes by Conductive Atomic Force Microscopy
,”
Electrochem. Solid-State Lett.
1099-0062,
9
(
2
), pp.
A88
A91
.
8.
Bass
,
M.
, and
Freger
,
V.
, 2008, “
Hydration of Nafion and Dowex in Liquid and Vapor Environment: Schroeder’s Paradox and Microstructure
,”
Polymer
0032-3861,
49
(
2
), pp.
497
506
.
9.
Ge
,
S. H.
,
Li
,
X. G.
,
Yi
,
B. L.
, and
Hsing
,
I. M.
, 2005, “
Absorption, Desorption, and Transport of Water in Polymer Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
6
), pp.
A1149
A1157
.
10.
Monroe
,
C. W.
,
Romero
,
T.
,
Merida
,
W.
, and
Eikerling
,
M.
, 2008, “
A Vaporization-Exchange Model for Water Sorption and Flux in Nafion
,”
J. Membr. Sci.
0376-7388,
324
(
1–2
), pp.
1
6
.
11.
Satterfield
,
M. B.
, and
Benziger
,
J. B.
, 2008, “
Non-Fickian Water Vapor Sorption Dynamics by Nafion Membranes
,”
J. Phys. Chem. B
1089-5647,
112
(
12
), pp.
3693
3704
.
12.
Aotani
,
K.
,
Miyazaki
,
S.
,
Kubo
,
N.
, and
Katsuta
,
M.
, 2008, “
An Analysis of the Water Transport Properties of Polymer Electrolyte Membrane
,”
ECS Trans.
1938-5862,
16
(
2
), pp.
341
352
.
13.
Majsztrik
,
P. W.
,
Satterfield
,
M. B.
,
Bocarsly
,
A. B.
, and
Benziger
,
J. B.
, 2007, “
Water Sorption, Desorption and Transport in Nafion Membranes
,”
J. Membr. Sci.
0376-7388,
301
(
1–2
), pp.
93
106
.
14.
Tsampas
,
M. N.
,
Pikos
,
A.
,
Brosda
,
S.
,
Katsaounis
,
A.
, and
Vayenas
,
C. G.
, 2006, “
The Effect of Membrane Thickness on the Conductivity of Nafion
,”
Electrochim. Acta
0013-4686,
51
(
13
), pp.
2743
2755
.
15.
Sethuraman
,
V. A.
,
Khan
,
S.
,
Jur
,
J. S.
,
Haug
,
A. T.
, and
Weidner
,
J. W.
, 2009, “
Measuring Oxygen, Carbon Monoxide and Hydrogen Sulfide Diffusion Coefficient and Solubility in Nafion Membranes
,”
Electrochim. Acta
0013-4686
54
(
27
), pp.
6850
6860
.
16.
Adachi
,
M.
,
Navessin
,
T.
,
Xie
,
Z.
,
Frisken
,
B.
, and
Holdcroft
,
S.
, 2009, “
Correlation of In Situ and Ex Situ Measurements of Water Permeation Through Nafion NRE211 Proton Exchange Membranes
,”
J. Electrochem. Soc.
0013-4651,
156
(
6
), pp.
B782
B790
.
17.
Freger
,
V.
, 2009, “
Hydration of Ionomers and Schroeder’s Paradox in Nafion
,”
J. Phys. Chem. B
1089-5647,
113
(
1
), pp.
24
36
.
18.
Goswami
,
S.
,
Klaus
,
S.
, and
Benziger
,
J.
, 2008, “
Wetting and Absorption of Water Drops on Nafion Films
,”
Langmuir
0743-7463,
24
(
16
), pp.
8627
8633
.
19.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes. II. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
151
(
2
), pp.
A311
A325
.
20.
Motupally
,
S.
,
Becker
,
A. J.
, and
Weidner
,
J. W.
, 2000, “
Diffusion of Water in Nafion 115 Membranes
,”
J. Electrochem. Soc.
0013-4651,
147
(
9
), pp.
3171
3177
.
21.
Tsushima
,
S.
,
Teranishi
,
K.
, and
Hirai
,
S.
, 2005, “
Water Diffusion Measurement in Fuel-Cell SPE Membrane by NMR
,”
Energy
0360-5442,
30
(
2–4
), pp.
235
245
.
22.
Pivovar
,
A. A.
, and
Pivovar
,
B. S.
, 2005, “
Dynamic Behavior of Water Within a Polymer Electrolyte Fuel Cell Membrane at Low Hydration Levels
,”
J. Phys. Chem. B
1089-5647,
109
(
2
), pp.
785
793
.
23.
Zawodzinski
,
T. A.
,
Derouin
,
C.
,
Radzinski
,
S.
,
Sherman
,
R. J.
,
Smith
,
V. T.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 1993, “
Water Uptake by and Transport Through Nafion(R) 117 Membranes
,”
J. Electrochem. Soc.
0013-4651,
140
(
4
), pp.
1041
1047
.
24.
Weber
,
A. Z.
, and
Newman
,
J.
, 2009, Device and Materials Modeling in PEM Fuel Cells, A Combination Model for Macroscopic Transport in Polymer-Electrolyte Membranes.
25.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
26.
Meier
,
F.
, and
Eigenberger
,
G.
, 2004, “
Transport Parameters for the Modelling of Water Transport in Ionomer Membranes for PEM-Fuel Cells
,”
Electrochim. Acta
0013-4686,
49
(
11
), pp.
1731
1742
.
27.
Majsztrik
,
P.
,
Bocarsly
,
A. B.
, and
Benziger
,
J.
, 2008,
Water Permeation Through Nafion Membranes: The Role of Water Activity
,
J. Phys. Chem. B
1089-5647,
112
, pp.
16280
16289
.
You do not currently have access to this content.