The multicomponent proton conducting ceramics SiO2TiO2ZrO2P2O5 (STZP) and SiO2TiO2ZrO2P2O5Bi2O3 with three different compositions (STZPBi3, STZPBi10, and STZPBi15) were synthesized via a wet chemical route. These prepared materials showed good thermal stability up to around 900°C by TG/DTA analyses. Introduction of optimum quantity of bismuth as a sintering aid into the samples contributed to enhance the densification of microstructure, which is essential for the utilization of proton conducting ceramics in fuel cells operated at elevated temperature. The proton conductivity of STZP was 3.6×105S/cm at 80°C and that of STZPBi10 was 4.6×103S/cm at 180°C. The fuel cell performances using STZP and STZPBi10 were implemented at 80°C and up to 230°C, respectively. The maximum power density was 0.03mW/cm2 at 80°C for the STZP sample and 2.5mW/cm2 at 150°C for the STZPBi10 sample under wet hydrogen and dry oxygen. The reduction of CO poisoning on platinum catalyst was demonstrated in fuel cell operating at temperatures of 180°C, 200°C, and 230°C.

1.
Norby
,
T.
, 1999, “
Solid-State Protonic Conductors: Principles, Properties, Progress and Prospects
,”
Solid State Ionics
0167-2738,
125
, pp.
1
11
.
2.
Haile
,
S. M.
, 2003, “
Fuel Cell Materials and Components
,”
Acta Mater.
1359-6454,
51
, pp.
5981
6000
.
3.
Yang
,
C.
,
Costamagna
,
P.
,
Srinivasan
,
S.
,
Benziger
,
J.
, and
Bocarsly
,
A. B.
, 2001, “
Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
103
, pp.
1
9
.
4.
Costamagna
,
P.
, and
Srinivasan
,
S.
, 2001, “
Quantum Jumps in the PEMFC Science and Technology From the 1960s to the Year 2000 Part I. Fundamental Scientific Aspects
,”
J. Power Sources
0378-7753,
102
, pp.
242
252
.
5.
Zhang
,
J.
,
Xie
,
Z.
,
Zhang
,
J.
, and
Holdcroft
,
S.
, 2006, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
872
891
.
6.
Divisek
,
J.
,
Oetjen
,
H. -F.
,
Peineke
,
V.
,
Schmidt
,
V. M.
, and
Stimming
,
U.
, 1998, “
Components for PEM Fuel Cell Systems Using Hydrogen and CO Containing Fuels
,”
Electrochim. Acta
0013-4686,
43
, pp.
3811
3815
.
7.
Jimenez
,
S.
,
Solber
,
J.
,
Valenzuela
,
R. X.
, and
Daza
,
L.
, 2005, “
Assessment of the Performance of a PEMFC in the Presence of CO
,”
J. Power Sources
0378-7753,
151
, pp.
69
73
.
8.
Li
,
Q.
,
He
,
R.
,
Gao
,
J. -A.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
, 2003, “
The CO Poisoning Effect in PEMFCs Operational at Temperatures Up to 200°C
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1599
A1605
.
9.
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
, 2003, “
High-Temperature Membranes
,”
Handbook of Fuel Cells: Fundamentals, Technology and Applications
, Vol.
3
,
Wiley
,
New York
, Chap. 34, pp.
436
445
.
10.
Alberti
,
G.
, and
Casciola
,
M.
, 2001, “
Solid State Protonic Conductors, Present Main Applications and Future Prospects
,”
Solid State Ionics
0167-2738,
145
, pp.
3
16
.
11.
Seo
,
D. -H.
,
Kim
,
H. -R.
,
Shakkthivel
,
P.
, and
Shul
,
Y. -G.
, 2008, “
Development of Intermediate Temperature Fuel Cell Using a Solid Proton Conductor
,”
Journal of the Korea Electrochemical Society
1229-1935,
11
, pp.
22
32
.
12.
Sundmacher
,
K.
,
Rihko-Struckmann
,
L. K.
, and
Galvita
,
V.
, 2005, “
Solid Electrolyte Membrane Reactors: Status and Trends
,”
Catal. Today
0920-5861,
104
, pp.
185
199
.
13.
Iwahara
,
H.
, 1996, “
Proton Conducting Ceramics and Their Applications
,”
Solid State Ionics
0167-2738,
86–88
, pp.
9
15
.
14.
Iwahara
,
H.
, 1995, “
Technological Challenges in the Application of Proton Conducting Ceramics
,”
Solid State Ionics
0167-2738,
77
, pp.
289
298
.
15.
Cervera
,
R. B.
,
Oyama
,
Y.
,
Miyoshi
,
S.
,
Kobayyashi
,
K.
,
Yagi
,
T.
, and
Yamaguchi
,
S.
, 2008, “
Structural Study and Proton Transport of Bulk Nanograined Y-Doped BaZrO3 Oxide Protonics Materials
,”
Solid State Ionics
0167-2738,
179
, pp.
236
242
.
16.
Uma
,
T.
, and
Nogami
,
M.
, 2006, “
On the Development of Proton Conducting P2O5–ZrO2–SiO2 Glasses for Fuel Cell Electrolytes
,”
Mater. Chem. Phys.
0254-0584,
98
, pp.
382
388
.
17.
Hogarth
,
W. H. J.
,
Muir
,
S. S.
,
Whittaker
,
A. K.
,
Costa
,
J. C. D.
,
Drennan
,
J.
, and
Lu
,
G. Q.
, 2007, “
Proton Conducting Mechanism and the Stability of Sol-Gel Titanium Phosphate
,”
Solid State Ionics
0167-2738,
177
, pp.
3389
3394
.
18.
Anilkumar
,
G. M.
,
Nakazawa
,
S.
,
Okubo
,
T.
, and
Yamaguchi
,
T.
, 2006, “
Proton Conducting Phosphated Zirconia-Sulfonated Polyether Sulfone Nanohybrid Electrolyte for Low Humidity, Wide-Temperature PEMFC Operation
,”
Electrochem. Commun.
1388-2481,
8
, pp.
133
136
.
19.
Colomban
,
P.
, and
Novak
,
A.
, 1992,
Proton Conductors: Solids, Membranes and Gels-Materials and Devices
,
Cambridge University Press
,
London
, pp.
38
60
.
20.
Kreuer
,
K. D.
, 1999, “
Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-Type Oxides
,”
Solid State Ionics
0167-2738,
125
, pp.
285
302
.
21.
Vendange
,
V.
, and
Colomban
,
Ph.
, 1996, “
Determination of the Hydroxyl Content in Gels and Porous “Glasses” From Alkoxide Hydrolysis by Combined TGA and BET Analysis
,”
J. Porous Mater.
1380-2224,
3
, pp.
193
200
.
22.
Watanabe
,
A.
, 1997, “
Bi2O3M4O44.5 (M=P and V): New Oxide-Ion Conductors With Triclinic Structure Based on a Pseudo-FCC Subcell
,”
Solid State Ionics
0167-2738,
96
, pp.
75
81
.
23.
Muroyama
,
H.
,
Kudo
,
K.
,
Matsui
,
T.
,
Kikuchi
,
R.
, and
Eguchi
,
K.
, 2007, “
Electrochemical Properties of MH2PO4/SiP2O7-Based Electrolytes (M=Alkaline Metal) for Use in Intermediate-Temperature Fuel Cells
,”
Solid State Ionics
0167-2738,
178
, pp.
1512
1516
.
24.
Sammes
,
N. M.
,
Tompsett
,
G. A.
,
Näfe
,
H.
, and
Aldinger
,
F.
, 1999, “
Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity
,”
J. Eur. Ceram. Soc.
0955-2219,
19
, pp.
1801
1826
.
You do not currently have access to this content.