Carbon-supported platinum and Pt–Pd alloy electrocatalysts with different Pt/Pd atomic ratios were synthesized by a microemulsion method at room temperature (metal loading is 10wt%). The Pt–Pd/C bimetallic catalysts showed a single-phase fcc structure and the mean particle size of Pt–Pd/C catalysts was found to be lower than that of Pt/C. The methanol-tolerant studies of the catalysts were carried out by activity evaluation of oxygen reduction reaction (ORR) on Pt–Pd catalysts using a rotating disk electrode (RDE). The studies indicated that the order of methanol tolerance was found to be PtPd3/C>PtPd/C>Pt3Pd/C. The oxygen reduction activities of all Pt–Pd/C were considerably larger than that of Pt/C with respect to onset and overpotential values. The Pd-loaded catalysts shift the onset potential of ORR by 125mVMSE, 53mVMSE, and 41mVMSE to less cathodic potentials for Pt3Pd/C, PtPd/C, and PtPd3/C, respectively, with reference to Pt/C and the Pt3Pd/C catalyst showed greater shift in the onset value than the other PtPd catalysts reported in literature. Moreover, the Pt–Pd/C catalysts exhibited much higher methanol tolerance during ORR than the Pt/C, assessing that these catalysts may function as a methanol-tolerant cathode catalysts in a direct methanol fuel cell.

1.
Lamm
,
A.
, and
Muller
,
J.
, 2003,
Handbook of Fuel Cells—Fundamentals, Technology and Applications
, Vol.
4
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
,
Hoboken, NJ
, Chap. 64.
2.
Narayanan
,
S. R.
,
Valdez
,
T. I.
, and
Rohatgi
,
N.
, 2003,
Handbook of Fuel Cells—Fundamentals, Technology and Applications
, Vol.
4
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
Wiley
,
Hoboken, NJ
, Chap. 65.
3.
Heinzel
,
A.
, and
Barragan
,
V. M.
, 1999, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
84
, pp.
70
74
.
4.
Cruickshank
,
J.
, and
Scott
,
K.
, 1998, “
The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
70
, pp.
40
47
.
5.
Wroblowa
,
H. S.
,
Pan
,
Y. -C.
, and
Razumney
,
G.
, 1976, “
Electroreduction of Oxygen a New Mechanistic Criterion
,”
J. Electroanal. Chem.
0022-0728,
69
, pp.
195
201
.
6.
Lingane
,
J. J.
, 1961, “
Chronopotentiometry Study of Oxygen at Platinum Wire Electrode
,”
J. Electroanal. Chem.
0022-0728,
2
, pp.
296
309
.
7.
Antolini
,
E.
,
Lopes
,
T.
, and
Gonzalez
,
E. R.
, 2008, “
An Overview of Platinum-Based Catalysts as Methanol-Resistant Oxygen Reduction Materials for Direct Methanol Fuel Cells
,”
J. Alloys Compd.
0925-8388,
461
, pp.
253
262
.
8.
Shukla
,
A. K.
,
Raman
,
R. K.
,
Choudhury
,
N. A.
,
Priolkar
,
K. R.
,
Sarode
,
P. R.
,
Emura
,
S.
, and
Kumashiro
,
R.
, 2004, “
Carbon-Supported Pt-Fe Alloy as Methanol-Tolerant Oxygen Reduction Catalyst for Direct Methanol Fuel Cell
,”
J. Electroanal. Chem.
0022-0728,
563
, pp.
181
190
.
9.
Oh
,
J. -G.
, and
Kim
,
H.
, 2008, “
Synthesis and Characterization of PtNx/C as Methanol-Tolerant Oxygen Reduction Electrocatalysts for a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
181
, pp.
74
78
.
10.
Reeve
,
R. W.
,
Christensen
,
P. A.
,
Dickinson
,
A. J.
,
Hammet
,
A.
, and
Scott
,
K.
, 2000, “
Methanol-Tolerant Oxygen Reduction Catalysts Based on Transition Metal Sulfides and Their Application to the Study of Methanol Permeation
,”
Electrochim. Acta
0013-4686,
45
, pp.
4237
4250
.
11.
Jiang
,
R.
, and
Chu
,
D.
, 2000, “
Remarkably Active Catalyst for the Electroreduction of O2 to H2O for the Use in Acid Electrolyte Containing Concentrated Methanol
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4605
4609
.
12.
Convert
,
P.
,
Countanceau
,
C.
,
Crouigneau
,
P.
,
Gloaguen
,
F.
, and
Lamy
,
C.
, 2001, “
Electrodes Modified by the Electrodeposition of CoTAA Complexes as Selective Oxygen Cathodes in Direct Methanol Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
945
952
.
13.
Schmidt
,
T. J.
,
Paulus
,
U. A.
,
Gasteiger
,
H. A.
,
Alonso-Vante
,
N.
, and
Behm
,
R. J.
, 2000, “
Oxygen Reduction on Ru1.92Mo0.08SeO4, Ru/C and Pt/C in Pure Methanol-Containing Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
2620
2624
.
14.
Jalan
,
V.
, and
Taylor
,
E. J.
, 1983, “
Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid
,”
J. Electrochem. Soc.
0013-4651,
130
, pp.
2299
2301
.
15.
Paffett
,
M. T.
,
Berry
,
G. J.
, and
Gottesfeld
,
S.
, 1988, “
Oxygen Reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum
,”
J. Electrochem. Soc.
0013-4651,
135
, pp.
1431
1439
.
16.
Bertolini
,
J. C.
, 1996, “
Local Order at the Surface of the Bimetallic Catalysts in Relation to Their Chemical Activity
,”
Surf. Rev. Lett.
0218-625X,
3
, pp.
1857
1860
.
17.
Toda
,
T.
,
Igarashi
,
H.
,
Uchida
,
H.
, and
Watanabe
,
M.
, 1999, “
Enhancement of Electro Reduction of Oxygen on Pt Alloys With Fe, Ni and Co
,”
J. Electrochem. Soc.
0013-4651,
146
, pp.
3750
3756
.
18.
Zhang
,
L.
,
Lee
,
K.
, and
Zhang
,
J.
, 2007, “
Effect of Synthetic Reducing Agents on Morphology and ORR Activity of Carbon-Supported Nano Pd-Co Alloy Electrocatalysts
,”
Electrochim. Acta
0013-4686,
52
, pp.
7964
7971
.
19.
Salvador-Pascual
,
J. J.
,
Citalan-Cigarroa
,
S.
, and
Solorza-Feria
,
O.
, 2007, “
Kinetics of Oxygen Reduction Reaction on Nanosized Pd Electrocatalyst in Acid Media
,”
J. Power Sources
0378-7753,
172
, pp.
229
234
.
20.
Nie
,
M.
,
Shen
,
P. K.
, and
Wei
,
Z.
, 2007, “
Nanocrystalline Tungsten Carbide Supported Au-Pd Electrocatalyst for Oxygen Reduction
,”
J. Power Sources
0378-7753,
167
, pp.
69
73
.
21.
Lie
,
X.
,
Huang
,
Q.
,
Zou
,
Z.
,
Xia
,
B.
, and
Yang
,
H.
, 2008, “
Low Temperature Preparation of Carbon-Supported Pd-Co Alloy Electrocatalysts for Methanol-Tolerant Oxygen Reduction Reaction
,”
J. Power Sources
0378-7753,
53
, pp.
6662
6667
.
22.
Calvo
,
S. R.
, and
Balbuena
,
B. P.
, 2007, “
Theoretical Analysis of Reactivity on Pt(111) and Pt-Pd(111) Alloys
,”
Surf. Sci.
0039-6028,
601
, pp.
4786
4792
.
23.
Lim
,
B.
,
Jiang
,
M.
,
Camargo
,
P. H. C.
,
Cho
,
E. C.
,
Tao
,
J.
,
Lu
,
X.
,
Zhu
,
Y.
, and
Xia
,
Y.
, 2009, “
Pt-Pd Bimetallic Nanodendrites With High Activity for Oxygen Reduction
,”
Science
0036-8075,
324
, pp.
1302
1305
.
24.
Yang
,
J.
,
Lee
,
J. Y.
,
Zhang
,
Q.
,
Zhou
,
W.
, and
Liu
,
Z.
, 2008, “
Carbon-Supported Pseudo Core-Shell Pd-Pt Nanoparticles for ORR With and Without Methanol
,”
J. Electrochem. Soc.
0013-4651,
155
, pp.
B776
B781
.
25.
Ye
,
H. H.
, and
Crooks
,
R. M.
, 2007, “
Effect of Elemental Composition of PtPd Bimetallic Nanoparticles Containing an Average of 180 Atoms on the Kinetics of Electrochemical Oxygen Reduction Reaction
,”
J. Am. Chem. Soc.
0002-7863,
129
, pp.
3627
3633
.
26.
Zhang
,
X.
, and
Chan
,
K. Y.
, 2002, “
Microemulsion Synthesis and Electrocatalytic Properties of Platinum-Cobalt Nanoparticles
,”
J. Mater. Chem.
0959-9428,
12
, pp.
1203
1206
.
27.
Yang
,
H.
,
Vogel
,
W.
,
Lamy
,
C.
, and
Alonso-Vante
,
N.
, 2004, “
Structure of Electrocatalytic Activity Of Carbon-Supported Pt-Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
11024
11034
.
28.
Li
,
M.
,
Chen
,
D. -H.
, and
Huang
,
T. -C.
, 2001, “
Preparation of Pd/Pt Bimetallic Nanoparticles in Water/AOT/Isooctane Microemulsions
,”
J. Colloid Interface Sci.
0021-9797,
123
, pp.
102
110
.
29.
Li
,
H.
,
Xin
,
Q.
,
Li
,
W.
,
Zhou
,
Z.
,
Jiang
,
L.
,
Yang
,
S.
, and
Sun
,
G.
, 2004, “
An Improved Palladium-Based DMFCs Cathode Catalyst
,”
Chem. Comm.
,
7
(
23
), pp.
2776
2777
.
30.
Shao
,
M. H.
,
Sasaki
,
K.
, and
Adzic
,
R. R.
, 2006, “
Pd-Fe Nanoparticles as Electrocatalysts for Oxygen Reduction
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
3526
3527
.
31.
Correia
,
A. N.
,
Mascaro
,
L. H.
,
Machoda
,
S. A. S.
, and
Avaca
,
L. A.
, 1997, “
Active Surface Area Determination of Pd-Si Alloys by H-Adsorption
,”
Electrochim. Acta
0013-4686,
42
, pp.
493
495
.
32.
Liu
,
P.
,
Logododottir
,
A.
, and
Norskov
,
J. K.
, 2003, “
Modeling and Electro-Oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn
,”
Electrochim. Acta
0013-4686,
48
, pp.
3731
3742
.
33.
Arenz
,
M.
,
Schmidt
,
T. J.
,
Wandelt
,
K.
,
Ross
,
P. N.
, and
Markovic
,
N. M.
, 2003, “
The Oxygen Reduction Reaction on Thin Palladium Films on Supported on a Pt(111) Electrode
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
9813
9819
.
34.
Papageorgopoulos
,
D. C.
,
Keijzer
,
M.
,
Veldhuis
,
J. B. J.
, and
de Bruijn
,
F. A.
, 2002, “
CO Tolerance of Pd-Rich Platinum-Palladium Carbon-Supported Electrocatalysts
,”
J. Electrochem. Soc.
0013-4651,
149
(
11
), pp.
A1400
A1404
.
35.
Zhang
,
J.
,
Mo
,
Y.
,
Vukmirovic
,
M. B.
,
Klie
,
R.
,
Sasaki
,
K.
, and
Adzic
,
R. R.
, 2004, “
Palladium Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
10955
10964
.
36.
Attard
,
G. A.
, and
Bannister
,
A.
, 1991, “
The Electrochemical Behavior of Irreversibly Adsorbed Palladium on Pt(111) in Acid Media
,”
J. Electroanal. Chem.
0022-0728,
300
, pp.
467
485
.
You do not currently have access to this content.