Abstract

In order to enhance the energy density of lithium-ion batteries (LIBs), semi-solid batteries, as a transitional product in the development of all-solid-state batteries, have garnered attention from numerous enterprises and research institutions. This study, through a designed experiment, triggers the thermal runaway (TR) of semi-solid Li(Ni0.6Co0.2Mn0.2)O2 (NCM622) batteries by lateral heating. The experiment utilizes a self-developed sealing device and a combination of temperature sensors and high-speed photography to record and analyze the temperature characteristics, gas emission characteristics, and emission morphology during the TR of the semi-solid NCM622 battery. Further research and analysis were conducted on the composition of the gas and products produced during TR. The results indicate that there is no apparent correlation between the severity of gas generation during TR and the rate of temperature rise. The highest temperature during battery TR can reach 950.33 °C, and the peak gas production rate can reach 300 L/s. The gas produced during TR mainly consists of CO, CO2, and H2, with CO accounting for up to 57.14%. The particulate matter produced during TR contains a large amount of organic elements such as C and O, as well as metal elements such as Ni, Al, Cu, and Co. This study fills a gap in the research content in the field of thermal safety of semi-solid LIBs, and the research data provide a reference for passive battery safety.

References

1.
Wang
,
X.
,
Wei
,
X.
,
Zhu
,
J.
,
Dai
,
H.
,
Zheng
,
Y.
,
Xu
,
X.
, and
Chen
,
Q.
,
2021
, “
A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management
,”
eTransportation
,
7
, p.
100093
.
2.
Zhang
,
H.
, and
Zhang
,
J.
,
2021
, “
An Overview of Modification Strategies to Improve LiNi0.8Co0.1Mn0.1O2 (NCM811) Cathode Performance for Automotive Lithium-Ion Batteries
,”
eTransportation
,
7
, p.
100105
.
3.
Song
,
Z.
,
Yang
,
X.
,
Yang
,
N.
,
Pinto Delgado
,
F.
,
Hofmann
,
H.
, and
Sun
,
J.
,
2021
, “
A Study of Cell-to-Cell Variation of Capacity in Parallel-Connected Lithium-Ion Battery Cells
,”
eTransportation
,
7
, p.
100091
.
4.
Zhang
,
Y.
,
Cheng
,
S.
,
Mei
,
W.
,
Jiang
,
L.
,
Jia
,
Z.
,
Cheng
,
Z.
,
Sun
,
J.
, et al
,
2023
, “
Understanding of Thermal Runaway Mechanism of LiFePO4 Battery In-Depth by Three-Level Analysis
,”
Appl. Energy
,
336
(
Part 1
), p.
120695
.
5.
Yu
,
W.
,
Guo
,
Y.
,
Shang
,
Z.
,
Zhang
,
Y.
, and
Xu
,
S.
,
2022
, “
A Review on Comprehensive Recycling of Spent Power Lithium-Ion Battery in China
,”
eTransportation
,
11
, p.
100155
.
6.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2022
, “
A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-Ion Batteries
,”
Energy Convers. Manage.: X
,
16
, p.
100310
.
7.
Zhao
,
C.
,
Kang
,
W.
,
Zhao
,
S.
, and
Shen
,
Q.
,
2011
, “
Hydrazine–Hydrothermal Synthesis of Pure-Phase O-LiMnO2 for Lithium-Ion Battery Application
,”
Micro Nano Lett.
,
6
(
10
), pp.
820
822
.
8.
Julien
,
C.
,
Mauger
,
A.
,
Zaghib
,
K.
, and
Groult
,
H.
,
2014
, “
Comparative Issues of Cathode Materials for Li-Ion Batteries
,”
Inorganics
,
2
, pp.
132
154
.
9.
Jin
,
C.
,
Sun
,
Y.
,
Wang
,
H.
,
Lai
,
X.
,
Wang
,
S.
,
Chen
,
S.
,
Rui
,
X.
, et al
,
2021
, “
Model and Experiments to Investigate Thermal Runaway Characterization of Lithium-Ion Batteries Induced by External Heating Method
,”
J. Power Sources
,
504
, p.
230065
.
10.
Ren
,
D.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Zheng
,
S.
,
Li
,
J.
, and
He
,
X.
,
2017
, “
An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery
,”
J. Power Sources
,
364
, pp.
328
340
.
11.
Li
,
H.
,
Zhou
,
D.
,
Zhang
,
M.
,
Liu
,
B.
, and
Zhang
,
C.
,
2023
, “
Multi-Field Interpretation of Internal Short Circuit and Thermal Runaway Behavior for Lithium-Ion Batteries Under Mechanical Abuse
,”
Energy
,
263
(
Part E
), p.
126027
.
12.
Kong
,
D.
,
Wang
,
G.
,
Ping
,
P.
, and
Wen
,
J.
,
2022
, “
A Coupled Conjugate Heat Transfer and CFD Model for the Thermal Runaway Evolution and Jet Fire of 18650 Lithium-Ion Battery Under Thermal Abuse
,”
eTransportation
,
12
, p.
100157
.
13.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
14.
Gong
,
Z.
,
Gu
,
C.
,
Sun
,
J.
,
Wang
,
H.
,
Li
,
Y.
,
Zhou
,
X.
,
Jia
,
Y.
, et al
,
2023
, “
Experimental Study on Thermal Runaway Characteristic and Residue of Li(Ni0.8Co0.1Mn0.1)O2 Lithium-Ion Batteries Induced by Overcharge
,”
J. Energy Storage
,
68
, p.
107705
.
15.
Shen
,
H.
,
Wang
,
H.
,
Li
,
M.
,
Li
,
C.
,
Zhang
,
Y.
,
Li
,
Y.
,
Yang
,
X.
, et al
,
2023
, “
Thermal Runaway Characteristics and Gas Composition Analysis of Lithium-Ion Batteries With Different LFP and NCM Cathode Materials Under Inert Atmosphere
,”
Electronics
,
12
(
7
), p.
1603
.
16.
Jin
,
C.
,
Sun
,
Y.
,
Zheng
,
Y.
,
Yao
,
J.
,
Wang
,
Y.
,
Lai
,
X.
,
Xu
,
C.
, et al
,
2023
, “
In Situ Observation of Thermal Runaway Propagation in Lithium-Ion Battery Electrodes Triggered by High-Frequency Induction Heating
,”
Cell Rep. Phys. Sci.
,
4
(
7
), p.
101465
.
17.
Friesen
,
A.
,
Horsthemke
,
F.
,
Mönnighoff
,
X.
,
Brunklaus
,
G.
,
Krafft
,
R.
,
Börner
,
M.
,
Risthaus
,
T.
, et al
,
2016
, “
Impact of Cycling at Low Temperatures on the Safety Behavior of 18650-Type Lithium ion Cells: Combined Study of Mechanical and Thermal Abuse Testing Accompanied by Post-Mortem Analysis
,”
J. Power Sources
,
334
, pp.
1
11
.
18.
Finegan
,
D.
,
Scheel
,
M.
,
Robinson
,
J.
,
Tjaden
,
B.
,
Hunt
,
I.
,
Mason
,
T. J.
,
Millichamp
,
J.
, et al
,
2015
, “
IN-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. Commun.
,
6
, p.
6924
.
19.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
, et al
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
.
20.
Mao
,
B.
,
Huang
,
P.
,
Chen
,
H.
,
Wang
,
Q.
, and
Sun
,
J.
,
2020
, “
Self-Heating Reaction and Thermal Runaway Criticality of the Lithium Ion Battery
,”
Int. J. Heat Mass Transfer
,
149
, p.
119178
.
21.
Wei
,
D.
,
Zhang
,
M.
,
Zhu
,
L.
,
Chen
,
H.
,
Huang
,
W.
,
Yao
,
J.
,
Yuan
,
Z.
, et al
,
2022
, “
Study on Thermal Runaway Behavior of Li-Ion Batteries Using Different Abuse Methods
,”
Batteries
,
8
(
11
), p.
201
.
22.
Zheng
,
S.
,
Wang
,
L.
,
Feng
,
X.
, and
He
,
X.
,
2018
, “
Probing the Heat Sources During Thermal Runaway Process by Thermal Analysis of Different Battery Chemistries
,”
J. Power Sources
,
378
, pp.
527
536
.
23.
Wang
,
H.
,
Zhang
,
Y.
,
Li
,
W.
,
Gao
,
Z.
,
Zhang
,
B.
, and
Ouyang
,
M.
,
2022
, “
Experimental Study on the Cell-Jet Temperatures of Abused Prismatic Ni-Rich Automotive Batteries Under Medium and High States of Charge
,”
Appl. Therm. Eng.
,
202
, p.
117859
.
24.
Zou
,
K.
,
He
,
K.
, and
Lu
,
S.
,
2022
, “
Venting Composition and Rate of Large-Format LiNi0.8Co0.1Mn0.1O2 Pouch Power Battery During Thermal Runaway
,”
Int. J. Heat Mass Transfer
,
195
, p.
123133
.
25.
Koch
,
S.
,
Fill
,
A.
, and
Birke
,
K.
,
2018
, “
Comprehensive gas Analysis on Large Scale Automotive Lithium-Ion Cells in Thermal Runaway
,”
J. Power Sources
,
398
, pp.
106
112
.
26.
Doughty
,
D.
,
Roth
,
E.
,
Crafts
,
C.
,
Nagasubramanian
,
G.
,
Henriksen
,
G.
, and
Amine
,
K.
,
2005
, “
Effects of Additives on Thermal Stability of Li Ion Cells
,”
J. Power Sources
,
146
, pp.
116
120
.
27.
Yuan
,
L.
,
Dubaniewicz
,
T.
,
Zlochower
,
I.
,
Thomas
,
R.
, and
Rayyan
,
N.
,
2020
, “
Experimental Study on Thermal Runaway and Vented Gases of Lithium-Ion Cells
,”
Process Saf. Environ. Prot.
,
144
, pp.
186
192
.
28.
Kennedy
,
R.
,
Marr
,
K.
, and
Ezekoye
,
O.
,
2021
, “
Gas Release Rates and Properties From Lithium Cobalt Oxide Lithium Ion Battery Arrays
,”
J. Power Sources
,
487
, p.
229388
.
29.
Golubkov
,
A.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
, et al
,
2014
, “
Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
, pp.
1
10
.
30.
Spinner
,
N.
,
Field
,
C.
,
Hammond
,
M.
,
Williams
,
B.
,
Myers
,
K.
,
Lubrano
,
A.
,
Rose-Pehrsson
,
S.
, et al
,
2015
, “
Physical and Chemical Analysis of Lithium-Ion Battery Cell-to-Cell Failure Events Inside Custom Fire Chamber
,”
J. Power Sources
,
279
, pp.
713
721
.
31.
Fernandes
,
Y.
,
Bry
,
A.
, and
de Persis
,
S.
,
2018
, “
Identification and Quantification of Gases Emitted During Abuse Tests by Overcharge of a Commercial Li-Ion Battery
,”
J. Power Sources
,
389
, pp.
106
119
.
32.
Feng
,
X.
,
Sun
,
J.
,
Ouyang
,
M.
,
He
,
X.
,
Lu
,
L.
,
Han
,
X.
,
Fang
,
M.
, et al.
,
2014
, “
Characterization of Large Format Lithium Ion Battery Exposed to Extremely High Temperature
,”
J. Power Sources
,
272
, pp.
457
467
.
33.
Li
,
K.
,
Xu
,
C.
,
Wang
,
H.
,
Jin
,
C.
,
Rui
,
X.
,
Chen
,
S.
,
Feng
,
X.
, et al.
,
2022
, “
Investigation for the Effect of Side Plates on Thermal Runaway Propagation Characteristics in Battery Modules
,”
Appl. Therm. Eng.
,
201
, p.
117774
.
34.
Soavi
,
F.
,
Brilloni
,
A.
,
De Giorgio
,
F.
, and
Poli
,
F.
,
2022
, “
Semi-Solid Lithium/Oxygen Flow Battery: An Emerging, High-Energy Technology
,”
Curr. Opin. Chem. Eng.
,
37
, p.
100835
.
35.
Chen
,
T.
,
Liu
,
B.
,
Zheng
,
M.
, and
Luo
,
Y.
,
2023
, “
Suspensions Based on LiFePO4/Carbon Nanotubes Composites With Three-Dimensional Conductive Network for Lithium-iIon Semi-Solid Flow Batteries
,”
J. Energy Storage
,
57
, p.
106300
.
36.
Xin
,
B.
,
Wang
,
R.
,
Liu
,
L.
, and
Niu
,
Z.
,
2023
, “
Metal-Organic Framework Derived MnO@C/CNTs Composite for High-Rate Lithium-Based Semi-Solid Flow Batteries
,”
Chin. J. Struct. Chem.
,
42
(
11
), p.
100116
.
37.
Li
,
W.
,
Wang
,
H.
,
Zhang
,
Y.
, and
Ouyang
,
M.
,
2019
, “
Flammability Characteristics of the Battery Vent Gas: A Case of NCA and LFP Lithium-Ion Batteries During External Heating Abuse
,”
J. Energy Storage
,
24
, p.
100775
.
38.
Leprince-Ringuet
,
F.
,
1914
, “
Limits of the Inflammability of Firedamp
,”
Phys. Rev. D
,
86
(
1
), pp.
594
602
.
39.
Mashuga
,
C.
, and
Crowl
,
D.
,
2000
, “
Derivation of le Chatelier’s Mixing Rule for Flammable Limits
,”
Process Saf. Prog.
,
19
(
2
), pp.
112
117
.
40.
Qian
,
Y.
,
Zuo
,
F.
,
Ye
,
J.
, and
Wang
,
H.
,
2022
, “
Research on Thermal Runaway Mechanism Analysis and Control Methods of Lithium-Ion Batteries
,”
Chin. J. Power Sources
,
46
(
11
), pp.
1227
1232
.
41.
Feng
,
C.
,
Zhang
,
X.
,
Chen
,
Y.
,
Gong
,
Y.
,
Liu
,
D.
, and
Zhang
,
P.
,
2017
, “
New Electrochemical Energy Storage Technology: Semi-Solid Lithium Batteries
,”
Bull. Sci. Technol.
,
33
(
8
), p.
9
.
42.
Lin
,
C.
,
Yan
,
H.
,
Qi
,
C.
,
Liu
,
Z.
,
Liu
,
D.
,
Liu
,
X.
,
Lao
,
L.
, et al
,
2024
, “
Thermal Runaway and Gas Production Characteristics of Semi-Solid Electrolyte and Liquid Electrolyte Lithium-Ion Batteries: A Comparative Study
,”
Process Saf. Environ. Prot.
,
189
, pp.
577
586
.
43.
Ren
,
D.
,
Feng
,
X.
,
Han
,
X.
,
Lu
,
L.
, and
Ouyang
,
M.
,
2018
, “
Research Progress on the Evolution of Lithium-Ion Battery Safety Throughout Its Life Cycle
,”
Energy Storage Sci. Technol.
,
7
(
6
), p.
957
.
You do not currently have access to this content.