Abstract

With the development of electric vehicles, the demand for lithium-ion batteries has been increasing annually. Accurately estimating the state of health (SOH) of lithium-ion batteries is crucial for their efficient and reliable use. Most of the existing research on SOH estimation is based on parameters such as current, voltage, and temperature, which are prone to fluctuations. Estimating the SOH of lithium-ion batteries based on electrochemical impedance spectroscopy (EIS) and data-driven approaches has been proven effective. In this paper, we explore a novel SOH estimation model for lithium batteries based on EIS and Convolutional Neural Network (CNN)-Vision Transformer (VIT). The EIS data are treated as a grayscale image, eliminating the need for manual feature extraction and simultaneously capturing both local and global features in the data. To validate the effectiveness of the proposed model, a series of simulation experiments are conducted, comparing it with various traditional machine learning models in terms of root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2). The simulation results demonstrate that the proposed model performs best overall in the testing dataset at three different temperatures. This confirms that the model can accurately and stably estimate the SOH of lithium-ion batteries without requiring manual feature extraction and knowledge of battery aging temperature.

References

1.
Lipu
,
M. S. H.
,
Hannan
,
M. A.
,
Hussain
,
A.
,
Hoque
,
M. M.
,
Ker
,
P. J.
,
Saad
,
M. H. M.
, and
Ayob
,
A.
,
2018
, “
A Review of State of Health and Remaining Useful Life Estimation Methods for Lithium-Ion Battery in Electric Vehicles: Challenges and Recommendations
,”
J. Cleaner Prod.
,
205
, pp.
115
133
.
2.
Kim
,
J.
,
Krüger
,
L.
, and
Kowal
,
J.
,
2020
, “
On-Line State-of-Health Estimation of Lithium-Ion Battery Cells Using Frequency Excitation
,”
J. Energy Storage
,
32
, pp.
101841
101847
.
3.
Tian
,
H.
,
Qin
,
P.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Cleaner Prod.
,
261
(
1
), pp.
120813
120850
.
4.
Zhou
,
D.
,
Fu
,
P.
,
Yin
,
H.
,
Xie
,
W.
, and
Feng
,
S.
,
2019
, “
A Study of Online State-of-Health Estimation Method for In-Use Electric Vehicles Based on Charge Data
,”
IEICE Trans. Inf. Syst.
,
E102.D
(
7
), pp.
1302
1309
.
5.
Prasad
,
G. K.
, and
Rahn
,
C. D.
,
2013
, “
Model Based Identification of Aging Parameters in Lithium ion Batteries
,”
J. Power Sources
,
232
, pp.
79
85
.
6.
Safari
,
M.
, and
Delacourt
,
C.
,
2011
, “
Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite/LiFePO4 Cell
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A1436
A1447
.
7.
Li
,
J.
,
Adewuyi
,
K.
,
Lotfi
,
N.
,
Landers
,
R. G.
, and
Park
,
J.
,
2018
, “
A Single Particle Model With Chemical/Mechanical Degradation Physics for Lithium ion Battery State of Health (SOH) Estimation
,”
Appl. Energy
,
212
, pp.
1178
1190
.
8.
Singh
,
P.
,
Chen
,
C.
,
Tan
,
C. M.
, and
Huang
,
S.-C.
,
2019
, “
Semi-Empirical Capacity Fading Model for SoH Estimation of Li-Ion Batteries
,”
Appl. Sci.
,
9
(
15
), pp.
3012
3026
.
9.
Wang
,
J.
,
Liu
,
P.
,
Hicks-Garner
,
J.
,
Sherman
,
E.
,
Soukiazian
,
S.
,
Verbrugge
,
M.
,
Tataria
,
H.
,
Musser
,
J.
, and
Finamore
,
P.
,
2011
, “
Cycle-Life Model for Graphite-LiFePO4 Cells
,”
J. Power Sources
,
196
(
8
), pp.
3942
3948
.
10.
Su
,
L.
,
Zhang
,
J.
,
Wang
,
C.
,
Zhang
,
Y.
,
Li
,
Z.
,
Song
,
Y.
,
Jin
,
T.
, and
Ma
,
Z.
,
2016
, “
Identifying Main Factors of Capacity Fading in Lithium Ion Cells Using Orthogonal Design of Experiments
,”
Appl. Energy
,
163
, pp.
201
210
.
11.
Li
,
J.
,
Klee Barillas
,
J.
,
Guenther
,
C.
, and
Danzer
,
M. A.
,
2014
, “
Sequential Monte Carlo Filter for State Estimation of LiFePO 4 Batteries Based on an Online Updated Model
,”
J. Power Sources
,
247
, pp.
156
162
.
12.
Feng
,
X.
,
Li
,
J.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
He
,
X.
,
2013
, “
Using Probability Density Function to Evaluate the State of Health of Lithium-Ion Batteries
,”
J. Power Sources
,
232
, pp.
209
218
.
13.
Yang
,
D.
,
Zhang
,
X.
,
Pan
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2018
, “
A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve
,”
J. Power Sources
,
384
, pp.
387
395
.
14.
You
,
G.-W.
,
Park
,
S.
, and
Oh
,
D.
,
2016
, “
Real-Time State-of-Health Estimation for Electric Vehicle Batteries: A Data-Driven Approach
,”
Appl. Energy
,
176
, pp.
92
103
.
15.
Zhao
,
Q.
,
Qin
,
X.
,
Zhao
,
H.
, and
Feng
,
W.
,
2018
, “
A Novel Prediction Method Based on the Support Vector Regression for the Remaining Useful Life of Lithium-Ion Batteries
,”
Microelectron. Reliab.
,
85
(
2018
), pp.
99
108
.
16.
Peng
,
Y.
,
Hou
,
Y.
,
Song
,
Y.
,
Pang
,
J.
, and
Liu
,
D.
,
2018
, “
Lithium-Ion Battery Prognostics With Hybrid Gaussian Process Function Regression
,”
Energies
,
11
(
6
), pp.
1420
1439
.
17.
Alvarez-Monteserin
,
I.
, and
Sanz-Bobi
,
M. A.
,
2022
, “
An Online Fade Capacity Estimation of Lithium-Ion Battery Using a New Health Indicator Based Only on a Short Period of the Charging Voltage Profile
,”
IEEE Access
,
10
, pp.
11138
11146
.
18.
Wen
,
J.
,
Chen
,
X.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
SOH Prediction of Lithium Battery Based on IC Curve Feature and BP Neural Network
,”
Energy
,
261
, pp.
125234
125241
.
19.
Chang
,
C.
,
Wang
,
Q.
,
Jiang
,
J.
, and
Wu
,
T.
,
2021
, “
Lithium-Ion Battery State of Health Estimation Using the Incremental Capacity and Wavelet Neural Networks With Genetic Algorithm
,”
J. Energy Storage
,
38
, pp.
102570
102578
.
20.
Chang
,
C.
,
Wang
,
S.
,
Tao
,
C.
,
Jiang
,
J.
,
Jiang
,
Y.
, and
Wang
,
L.
,
2022
, “
An Improvement of Equivalent Circuit Model for State of Health Estimation of Lithium-Ion Batteries Based on Mid-Frequency and Low-Frequency Electrochemical Impedance Spectroscopy
,”
Measurement
,
202
, pp.
111795
111108
.
21.
Penjuru
,
N. M. H.
,
Reddy
,
G. V.
,
Nair
,
M. R
,
Sahoo
,
S.
,
Mayank
,
Jiang
,
J.
,
Ahmed
,
J.
,
Wang
,
H.
, and
Roy
,
T.
,
2022
, “
Machine Learning Aided Predictions for Capacity Fade of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
169
(
5
), pp.
050535
050539
.
22.
Su
,
X.
,
Sun
,
B.
,
Wang
,
J.
,
Zhang
,
W.
,
Ma
,
S.
,
He
,
X.
, and
Ruan
,
H.
,
2022
, “
Fast Capacity Estimation for Lithium-Ion Battery Based on Online Identification of Low-Frequency Electrochemical Impedance Spectroscopy and Gaussian Process Regression
,”
Appl. Energy
,
322
, pp.
119516
119530
.
23.
Pradyumna
,
T. K.
,
Cho
,
K.
,
Kim
,
M.
, and
Choi
,
W.
,
2022
, “
Capacity Estimation of Lithium-ion Batteries Using Convolutional Neural Network and Impedance Spectra
,”
J. Power Electron.
,
22
(
5
), pp.
850
858
.
24.
Li
,
D.
,
Yang
,
D.
,
Li
,
L.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries
,”
Energies
,
15
(
18
), pp.
6665
6690
.
25.
Sun
,
S.
,
Sun
,
J.
,
Wang
,
Z.
,
Zhou
,
Z.
, and
Cai
,
W.
,
2022
, “
Prediction of Battery SOH by CNN-BiLSTM Network Fused With Attention Mechanism
,”
Energies
,
15
(
12
), pp.
4428
4444
.
26.
Zhang
,
Y.
,
Tang
,
Q.
,
Zhang
,
Y.
,
Wang
,
J.
,
Stimming
,
U.
, and
Lee
,
A. A.
,
2020
, “
Identifying Degradation Patterns of Lithium ion Batteries From Impedance Spectroscopy Using Machine Learning
,”
Nat. Commun.
,
11
(
1
), pp.
1706
1711
.
27.
Wang
,
L.
,
Lu
,
D.
,
Song
,
M.
,
Zhao
,
X.
, and
Li
,
G.
,
2020
, “
Instantaneous Estimation of Internal Temperature in Lithium-Ion Battery by Impedance Measurement
,”
Int. J. Energy Res.
,
44
(
4
), pp.
3082
3097
.
28.
Wang
,
X.
,
Wei
,
X.
,
Zhu
,
J.
,
Dai
,
H.
,
Zheng
,
Y.
,
Xu
,
X.
, and
Chen
,
Q.
,
2021
, “
A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management
,”
eTransportation
,
S2590-1168
(
20
), pp.
30051
5
.
29.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Neural Inf. Process Sys.
, pp.
5998
6008
.
30.
Fu
,
Y.
,
Xu
,
J.
,
Shi
,
M.
, and
Mei
,
X.
,
2022
, “
A Fast Impedance Calculation-Based Battery State-of-Health Estimation Method
,”
IEEE Trans. Ind. Electron.
,
69
(
7
), pp.
7019
7028
.
31.
Li
,
T.
,
Wang
,
D.
, and
Wang
,
H.
,
2022
, “
New Method for Acquisition of Impedance Spectra From Charge/Discharge Curves of Lithium-Ion Batteries
,”
J. Power Sources
,
535
, pp.
231483
231490
.
You do not currently have access to this content.