Abstract

The rise of electric vehicles has driven the extensive adoption of lithium-ion batteries (LIBs) due to their favorable attributes—compactness, low resistance, high power density, and minimal self-discharge. To enhance LIB reliability, an efficient battery thermal management system is imperative. This paper introduces a finite volume-based aerothermal analysis framework for a 32-cell high-energy density LIB pack. We also explore the effectiveness of various turbulence models in capturing local hotspots, discharge rates, and current levels across different geometries and inlet velocities. Our approach involves modeling the battery using Simcenter Battery Design Studio and importing it into Simcenter star-ccm+ for aerothermal simulations in which temperature distribution, discharge rates, current levels, and maximum temperature across are monitored for aligned, cross, and staggered configurations of the battery pack under varying inlet velocities. Our findings highlight the significant impact of boundary condition modeling on simulation stability. Also we observed that the standard k–ε model provides the most accurate predictions, with prediction accuracy within 3–10% of experimental data. Moreover, we identify substantial dependencies between heat generation and discharge current, as well as thermal gradients and inlet velocity. Finally, we conclude that the aligned cell arrangement offers the best thermal uniformity and cooling efficiency.

References

1.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
2.
Liao
,
Z.
,
Zhang
,
S.
,
Li
,
K.
,
Zhang
,
G.
, and
Habetler
,
T. G.
,
2019
, “
A Survey of Methods for Monitoring and Detecting Thermal Runaway of Lithium-Ion Batteries
,”
J. Power Sources
,
436
, p.
226879
.
3.
Coman
,
P. T.
,
Darcy
,
E. C.
,
Veje
,
C. T.
, and
White
,
R. E.
,
2017
, “
Numerical Analysis of Heat Propagation in a Battery Pack Using a Novel Technology for Triggering Thermal Runaway
,”
Appl. Energy
,
203
, pp.
189
200
.
4.
Väyrynen
,
A.
, and
Salminen
,
J.
,
2012
, “
Lithium Ion Battery Production
,”
J. Chem. Thermodyn.
,
46
, pp.
80
85
.
5.
Fan
,
Y.
,
Bao
,
Y.
,
Ling
,
C.
,
Chu
,
Y.
,
Tan
,
X.
, and
Yang
,
S.
,
2019
, “
Experimental Study on the Thermal Management Performance of Air Cooling for High Energy Density Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
155
, pp.
96
109
.
6.
Wang
,
H.
,
Tao
,
T.
,
Xu
,
J.
,
Mei
,
X.
,
Liu
,
X.
, and
Gou
,
P.
,
2020
, “
Cooling Capacity of a Novel Modular Liquid-Cooled Battery Thermal Management System for Cylindrical Lithium Ion Batteries
,”
Appl. Therm. Eng.
,
178
, p.
115591
.
7.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Theoretical Investigation of Temperature Distributions in a Prismatic Lithium-Ion Battery
,”
Int. J. Therm. Sci.
,
99
, pp.
204
212
.
8.
Erdinc
,
O.
,
Vural
,
B.
, and
Uzunoglu
,
M.
,
2009
, “
A Dynamic Lithium-Ion Battery Model Considering the Effects of Temperature and Capacity Fading
,”
2009 International Conference on Clean Electrical Power
,
Capri, Italy
,
June 9–11
, IEEE, pp.
383
386
.
9.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.
10.
Smart
,
M.
,
Ratnakumar
,
B.
,
Whitcanack
,
L.
,
Chin
,
K.
,
Rodriguez
,
M.
, and
Surampudi
,
S.
,
2002
, “
Performance Characteristics of Lithium Ion Cells at Low Temperatures
,”
IEEE Aerosp. Electron. Syst. Mag.
,
17
(
12
), pp.
16
20
.
11.
Hou
,
J.
,
Yang
,
M.
,
Wang
,
D.
, and
Zhang
,
J.
,
2020
, “
Fundamentals and Challenges of Lithium Ion Batteries at Temperatures Between 40 and 60 C
,”
Adv. Energy Mater.
,
10
(
18
), p.
1904152
.
12.
Chen
,
S.
,
Wan
,
C.
, and
Wang
,
Y.
,
2005
, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Power Sources
,
140
(
1
), pp.
111
124
.
13.
Santhanagopalan
,
S.
,
Ramadass
,
P.
, and
Zhang
,
J. Z.
,
2009
, “
Analysis of Internal Short-Circuit in a Lithium Ion Cell
,”
J. Power Sources
,
194
(
1
), pp.
550
557
.
14.
Gilaki
,
M.
, and
Avdeev
,
I.
,
2016
, “
Impact Modeling of Cylindrical Lithium-Ion Battery Cells: A Heterogeneous Approach
,”
J. Power Sources
,
328
, pp.
443
451
.
15.
Chen
,
Y.
, and
Evans
,
J. W.
,
1996
, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
143
(
9
), p.
2708
.
16.
Onda
,
K.
,
Kameyama
,
H.
,
Hanamoto
,
T.
, and
Ito
,
K.
,
2003
, “
Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries
,”
J. Electrochem. Soc.
,
150
(
3
), p.
A285
.
17.
Kim
,
G.-H.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
.
18.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
.
19.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
20.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
21.
Li
,
X.
,
He
,
F.
, and
Ma
,
L.
,
2013
, “
Thermal Management of Cylindrical Batteries Investigated Using Wind Tunnel Testing and Computational Fluid Dynamics Simulation
,”
J. Power Sources
,
238
, pp.
395
402
.
22.
Sun
,
H.
,
Wang
,
X.
,
Tossan
,
B.
, and
Dixon
,
R.
,
2012
, “
Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Pack
,”
J. Power Sources
,
206
, pp.
349
356
.
23.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
24.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.
25.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,” NASA Sti/recon Technical Report N, 95, p.
11442
.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Menter
,
F.
,
1993
, “
Zonal Two Equation Kw Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
July 6–9
, p. 2906.
28.
Billard
,
F.
, and
Laurence
,
D.
,
2012
, “
A Robust K–ε- V2/k Elliptic Blending Turbulence Model Applied to Near-Wall, Separated and Buoyant Flows
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
45
58
.
29.
Zhang
,
C.
,
Bounds
,
C. P.
,
Foster
,
L.
, and
Uddin
,
M.
,
2019
, “
Turbulence Modeling Effects on the CFD Predictions of Flow Over a Detailed Full-Scale Sedan Vehicle
,”
Fluids
,
4
(
3
), p.
148
.
30.
Sturm
,
J.
,
Rheinfeld
,
A.
,
Zilberman
,
I.
,
Spingler
,
F. B.
,
Kosch
,
S.
,
Frie
,
F.
, and
Jossen
,
A.
,
2019
, “
Modeling and Simulation of Inhomogeneities in a 18650 Nickel-Rich, Silicon-Graphite Lithium-Ion Cell During Fast Charging
,”
J. Power Sources
,
412
, pp.
204
223
.
31.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), p.
1526
.
32.
Gu
,
H.
,
1983
, “
Mathematical Analysis of a Zn/NiOOH Cell
,”
J. Electrochem. Soc.
,
130
(
7
), p.
1459
.
33.
Newman
,
J.
, and
Tiedemann
,
W.
,
1993
, “
Potential and Current Distribution in Electrochemical Cells: Interpretation of the Half-Cell Voltage Measurements as a Function of Reference-Electrode Location
,”
J. Electrochem. Soc.
,
140
(
7
), p.
1961
.
34.
Verbrugge
,
M.
, and
Tate
,
E.
,
2004
, “
Adaptive State of Charge Algorithm for Nickel Metal Hydride Batteries Including Hysteresis Phenomena
,”
J. Power Sources
,
126
(
1–2
), pp.
236
249
.
35.
Wang
,
S.
,
Verbrugge
,
M.
,
Wang
,
J. S.
, and
Liu
,
P.
,
2012
, “
Power Prediction From a Battery State Estimator That Incorporates Diffusion Resistance
,”
J. Power Sources
,
214
, pp.
399
406
.
36.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2012
,
Electrochemical Systems
,
John Wiley & Sons
,
Hoboken, NJ
.
37.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), p.
1
.
38.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
, 9th ed.,
Springer-Verlag
,
Berlin/Heidelberg
, Germany. https://link.springer.com/book/10.1007/978-3-662-52919-5
39.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
The MIT Press
,
Cambridge, MA
.
40.
Pope
,
S. B.
, and
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
41.
Fu
,
C.
,
Uddin
,
M.
, and
Zhang
,
C.
,
2020
, “
Computational Analyses of the Effects of Wind Tunnel Ground Simulation and Blockage Ratio on the Aerodynamic Prediction of Flow Over a Passenger Vehicle
,”
Vehicles
,
2
(
2
), pp.
318
341
.
42.
Goldbach
,
M. C.
, and
Uddin
,
M.
,
2019
, “
High-Resolution RANS Simulations of Flow Past a Surface-Mounted Cube Using Eddy-Viscosity Closure Models
,”
ASME J. Verification Validation Uncertainty Quantif.
,
4
(
1
), p.
011005
.
43.
Jain
,
A.
,
2021
, “
Development of a CFD Simulation Framework for Aerothermal Analyses of Electric Vehicle Battery Packs
,” Master’s thesis,
The University of North Carolina at Charlotte
,
Charlotte
.
44.
Rist
,
U.
, and
Fasel
,
H.
,
1995
, “
Direct Numerical Simulation of Controlled Transition in a Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
298
, pp.
211
248
.
45.
Na
,
Y.
, and
Moin
,
P.
,
1998
, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
374
, pp.
379
405
.
46.
He
,
F.
, and
Ma
,
L.
,
2016
, “
Thermal Management in Hybrid Power Systems Using Cylindrical and Prismatic Battery Cells
,”
Heat Transfer Eng.
,
37
(
6
), pp.
581
590
.
47.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London, UK
.
48.
Misar
,
A. S.
,
Bounds
,
C.
,
Ahani
,
H.
,
Zafar
,
M. U.
, and
Uddin
,
M.
,
2021
, “
On the Effects of Parallelization on the Flow Prediction Around a Fastback Drivaer Model at Different Attitudes
,” Tech. Rep., SAE WCX Technical Paper.
49.
Zhang
,
C.
,
Uddin
,
M.
,
Robinson
,
A. C.
, and
Foster
,
L.
,
2018
, “
Full Vehicle CFD Investigations on the Influence of Front-End Configuration on Radiator Performance and Cooling Drag
,”
Appl. Therm. Eng.
,
130
, pp.
1328
1340
.
50.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
.
51.
Fu
,
C.
,
Bounds
,
C.
,
Uddin
,
M.
, and
Selent
,
C.
,
2019
, “
Fine Tuning the SST K–ω Turbulence Model Closure Coefficients for Improved Nascar Cup Racecar Aerodynamic Predictions
,”
SAE Int. J. Adv. Current Pract. Mobility
,
1
(
2019-01-0641
), pp.
1226
1232
.
52.
Bounds
,
C. P.
,
Zhang
,
C.
, and
Uddin
,
M.
,
2020
, “
Improved CFD Prediction of Flows Past Simplified and Real-Life Automotive Bodies Using Modified Turbulence Model Closure Coefficients
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
234
(
10–11
), pp.
2522
2545
.
53.
Bounds
,
C. P.
,
Rajasekar
,
S.
, and
Uddin
,
M.
,
2021
, “
Development of a Numerical Investigation Framework for Ground Vehicle Platooning
,”
Fluids
,
6
(
11
), p.
404
.
54.
Misar
,
A. S.
,
Uddin
,
M.
,
Robinson
,
A.
, and
Fu
,
C.
,
2020
, “
Numerical Analysis of Flow Around an Isolated Rotating Wheel Using a Sliding Mesh Technique
,” Tech. Rep., SAE WCX Technical Paper.
55.
Misar
,
A. S.
, and
Uddin
,
M.
,
2022
, “
Effects of Solver Parameters and Boundary Conditions on Rans CFD Flow Predictions Over a Gen-6 NASCAR Racecar
,” Tech. Rep., SAE WCX Technical Paper.
56.
Misar
,
A. S.
,
Uddin
,
M.
,
Pandaleon
,
T.
, and
Wilson
,
J.
,
2023
, “
Scale-Resolved and Time-Averaged Simulations of the Flow Over a Nascar Cup Series Racecar
. Tech. Rep., SAE Technical Paper.
57.
Sosnowski
,
M.
,
Krzywanski
,
J.
,
Grabowska
,
K.
, and
Gnatowska
,
R.
,
2018
, “
Polyhedral Meshing in Numerical Analysis of Conjugate Heat Transfer
,”
EFM 2017 : Experimental Fluid Mechanics 2017
,
Mikulov, Czech Republic
,
Nov. 21–24
, p. 02096.
58.
Córcoles-Tendero
,
J.
,
Belmonte
,
J.
,
Molina
,
A.
, and
Almendros-Ibáñez
,
J.
,
2018
, “
Numerical Simulation of the Heat Transfer Process in a Corrugated Tube
,”
Int. J. Therm. Sci.
,
126
, pp.
125
136
.
59.
Singh
,
D.
,
Premachandran
,
B.
, and
Kohli
,
S.
,
2013
, “
Numerical Simulation of the Jet Impingement Cooling of a Circular Cylinder
,”
Numer. Heat Transfer Part A: Appl.
,
64
(
2
), pp.
153
185
.
60.
Kenjereš
,
S.
, and
Hanjalić
,
K.
,
1995
, “
Prediction of Turbulent Thermal Convection in Concentric and Eccentric Horizontal Annuli
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
429
439
.
61.
Peeters
,
T.
, and
Henkes
,
R.
,
1992
, “
The Reynolds-Stress Model of Turbulence Applied to the Natural-Convection Boundary Layer Along a Heated Vertical Plate
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
403
420
.
62.
Choi
,
S.-K.
, and
Kim
,
S.-O.
,
2012
, “
Turbulence Modeling of Natural Convection in Enclosures: A Review
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
283
297
.
63.
Liang
,
J.
,
Gan
,
Y.
, and
Li
,
Y.
,
2018
, “
Investigation on the Thermal Performance of a Battery Thermal Management System Using Heat Pipe Under Different Ambient Temperatures
,”
Energy Convers. Manage.
,
155
, pp.
1
9
.
64.
Xie
,
Y.
,
Shi
,
S.
,
Tang
,
J.
,
Wu
,
H.
, and
Yu
,
J.
,
2018
, “
Experimental and Analytical Study on Heat Generation Characteristics of a Lithium-Ion Power Battery
,”
Int. J. Heat Mass Transfer
,
122
, pp.
884
894
.
65.
Ouyang
,
D.
,
Liu
,
J.
,
Chen
,
M.
,
Weng
,
J.
, and
Wang
,
J.
,
2018
, “
An Experimental Study on the Thermal Failure Propagation in Lithium-Ion Battery Pack
,”
J. Electrochem. Soc.
,
165
(
10
), p.
A2184
.
You do not currently have access to this content.