Abstract

A high temperature ammonia treatment was applied to carbon felt electrodes to enhance vanadium redox flow battery (VRFB) performance. Samples were heated to 900 °C in the presence of ammonia gas for up to 4 h. While all heating times resulted in an overall improvement in current density at 80% voltage efficiency, samples treated for 4 h showed the greatest increase in current density (325%) compared to untreated carbon felt. Raman spectroscopy showed a 74% increase in edge sites as a result of the 4 h treatment. Electrochemical surface area increased by 142% and scanning electron microscopy showed the appearance of pores on felt fiber surfaces, indicating that the performance improvement may be due to enhanced surface area in addition to functionalization. Impedance spectroscopy showed decreased charge transfer resistance and increased durability (during cycling) compared to other published electrode treatments. These results indicate that heated ammonia can be used to increase the performance of electrodes for vanadium flow battery applications, with excellent durability.

References

1.
Lee
,
C. K.
,
Tan
,
S. C.
,
Wu
,
F. F.
,
Hui
,
S. Y. R.
, and
Chaudhuri
,
B.
,
2013
, “
Use of Hooke’s Law for Stabilizing Future Smart Grid—The Electric Spring Concept
,”
2013 IEEE Energy Conversion Congress and Exposition.
,
Denver, CO
,
Sept. 15–19
.
2.
McDowall
,
J.
,
2006
, “
Integrating Energy Storage With Wind Power in Weak Electricity Grids
,”
J. Power Sources
,
162
(
2
), pp.
959
964
.
3.
Gandomi
,
Y. A.
,
Aaron
,
D. S.
,
Houser
,
J. R.
,
Daugherty
,
M. C.
,
Clement
,
J. T.
,
Pezeshki
,
A. M.
,
Ertuğrul
,
T. Y.
,
Moseley
,
D. P.
, and
Mench
,
M. M.
,
2018
, “
Critical Review—Experimental Diagnostics and Material Characterization Techniques Used on Redox Flow Batteries
,”
J. Electrochem. Soc.
,
165
(
5
), pp.
A970
A1010
.
4.
Lourenssen
,
K.
,
Williams
,
J.
,
Ahmadpour
,
F.
,
Clemmer
,
R.
, and
Tasnim
,
S.
,
2019
, “
Vanadium Redox Flow Batteries: A Comprehensive Review
,”
J. Energy Storage
,
25
(
1
), p.
100844
.
5.
Vickers
,
P. E.
,
Watts
,
J. F.
,
Perruchot
,
C.
, and
Chehimi
,
M. M.
,
2000
, “
The Surface Chemistry and Acid–Base Properties of a PAN-Based Carbon Fibre
,”
Carbon
,
38
(
5
), pp.
675
689
.
6.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—I. Thermal Treatment
,”
Electrochim. Acta
,
37
(
7
), pp.
1253
1260
.
7.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—Part II. Acid Treatments
,”
Electrochim. Acta
,
37
(
13
), pp.
2459
2465
.
8.
Hassan
,
A.
, and
Tzedakis
,
T.
,
2019
, “
Enhancement of the Electrochemical Activity of a Commercial Graphite Felt for Vanadium Redox Flow Battery (VRFB), by Chemical Treatment With Acidic Solution of K2Cr2O7
,”
J. Energy Storage
,
26
(
1
), p.
100967
.
9.
He
,
Z.
,
Jiang
,
Y.
,
Meng
,
W.
,
Jiang
,
F.
,
Zhou
,
H.
,
Li
,
Y.
,
Zhu
,
J.
,
Wang
,
L.
, and
Dai
,
L.
,
2017
, “
HF/H2O2 Treated Graphite Felt as the Positive Electrode for Vanadium Redox Flow Battery
,”
Appl. Surf. Sci.
,
423
(
1
), pp.
111
118
.
10.
Kim
,
K. J.
,
Lee
,
S.-W.
,
Yim
,
T.
,
Kim
,
J.-G.
,
Choi
,
J. W.
,
Kim
,
J. H.
,
Park
,
M.-S.
, and
Kim
,
Y.-J.
,
2014
, “
A New Strategy for Integrating Abundant Oxygen Functional Groups Into Carbon Felt Electrode for Vanadium Redox Flow Batteries
,”
Sci. Rep.
,
4
(
1
), p.
6906
.
11.
Gao
,
C.
,
Wang
,
N.
,
Peng
,
S.
,
Liu
,
S.
,
Lei
,
Y.
,
Liang
,
X.
,
Zeng
,
S.
, and
Zi
,
H.
,
2013
, “
Influence of Fenton’s Reagent Treatment on Electrochemical Properties of Graphite Felt for All Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
88
(
1
), pp.
193
202
.
12.
Jing
,
M.
,
Xu
,
Z.
,
Fang
,
D.
,
Fan
,
X.
,
Liu
,
J.
, and
Yan
,
C.
,
2021
, “
Improvement of the Battery Performance of Vanadium Flow Battery by Enhancing the Specific Surface Area of the Carbon Felt Electrodes: II. Digging Effect
,”
J. Electrochem. Soc.
,
168
(
3
), p.
030539
.
13.
Zhou
,
X. L.
,
Zeng
,
Y. K.
,
Zhu
,
X. B.
,
Wei
,
L.
, and
Zhao
,
T. S.
,
2016
, “
A High-Performance Dual-Scale Porous Electrode for Vanadium Redox Flow Batteries
,”
J. Power Sources
,
325
(
1
), pp.
329
336
.
14.
Pezeshki
,
A. M.
,
2016
, “
Impedance-Resolved Performance and Durability in Redox Flow Batteries
,”
Ph.D. dissertation, University of Tennessee, Knoxville, TN
.
15.
Pezeshki
,
A. M.
,
Clement
,
J. T.
,
Veith
,
G. M.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2015
, “
High Performance Electrodes in Vanadium Redox Flow Batteries Through Oxygen-Enriched Thermal Activation
,”
J. Power Sources
,
294
(
1
), pp.
333
338
.
16.
Radinger
,
H.
,
Ghamlouche
,
A.
,
Scheiba
,
F.
, and
Ehrenberg
,
H.
,
2020
, “
Systematic Analysis of Oxygen Functional Groups and Graphitic Defects on Vanadium Flow Battery Electrodes
,”
ECS Meeting Abstr.
, MA2020-02(
45
), pp.
3753
3753
.
17.
Radinger
,
H.
,
Pfisterer
,
J.
,
Scheiba
,
F.
, and
Ehrenberg
,
H.
,
2020
, “
Influence and Electrochemical Stability of Oxygen Groups and Edge Sites in Vanadium Redox Reactions
,”
ChemElectroChem
,
7
(
23
), pp.
4745
4754
.
18.
Shafeeyan
,
M. S.
,
Daud
,
W. M. A. W.
,
Houshmand
,
A.
, and
Shamiri
,
A.
,
2010
, “
A Review on Surface Modification of Activated Carbon for Carbon Dioxide Adsorption
,”
J. Anal. Appl. Pyrolysis
,
89
(
2
), pp.
143
151
.
19.
Biniak
,
S.
,
Szymański
,
G.
,
Siedlewski
,
J.
, and
Świątkowski
,
A.
,
1997
, “
The Characterization of Activated Carbons With Oxygen and Nitrogen Surface Groups
,”
Carbon
,
35
(
12
), pp.
1799
1810
.
20.
Vargel
,
C.
,
2020
, Chapter C.2—Pitting Corrosion,
Corrosion of Aluminium
, 2nd ed.,
C.
Vargel
, ed.,
Elsevier
,
Amsterdam
, pp.
163
183
.
21.
Popov
,
B. N.
,
2015
, Chapter 7—Pitting and Crevice Corrosion,
Corrosion Engineering
,
B. N.
Popov
, ed.,
Elsevier
,
Amsterdam
, pp.
289
325
.
22.
Zhang
,
Z.
,
Xi
,
J.
,
Zhou
,
H.
, and
Qiu
,
X.
,
2016
, “
KOH Etched Graphite Felt With Improved Wettability and Activity for Vanadium Flow Batteries
,”
Electrochim. Acta
,
218
(
1
), pp.
15
23
.
23.
Aaron
,
D.
,
Yeom
,
S.
,
Kihm
,
K. D.
,
Ashraf Gandomi
,
Y.
,
Ertugrul
,
T.
, and
Mench
,
M. M.
,
2017
, “
Kinetic Enhancement Via Passive Deposition of Carbon-Based Nanomaterials in Vanadium Redox Flow Batteries
,”
J. Power Sources
,
366
, pp.
241
248
.
24.
Mench
,
M. M.
,
2008
,
Fuel Cell Engines
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.