Abstract

Next-generation lithium ion batteries are expected to demonstrate superior energy and power density with longer cycle life for successful electrification of the automobile, aviation, and marine industries. Adoption of lithium metal anodes with solid electrolytes can help to achieve that goal given that the dendrite-related issues are solved eventually. Another possibility is to use Ni-rich high-capacity NMC cathode materials with liquid and/or solid electrolytes, which presently experiences rapid capacity fade while charged to higher voltages. Several mechanical and chemical degradation mechanisms are active within these NMC-based cathode particles. Recent experimental research activities attempted to correlate the mechanical damage with the capacity fade experienced by Ni-rich LiNixMnyCozO2 (x+y+z = 1) (NMC) cathodes. A computational framework is developed in this study capable of quantifying the evolution of inter primary particle and cathode/electrolyte interfacial fracture experienced by the poly- and single-crystalline NMC cathodes during charge/discharge operation. Influences of mechanical degradation on the overall cell capacity, while operating with liquid and/or solid electrolytes, are successfully characterized. Decreasing the size of the cathode primary particles, or the size of the single-crystalline cathodes, can mitigate the overall mechanical degradation, and subsequent capacity fade, experienced by NMC cathodes. The developed theoretical methodology can help the engineers and scientists to better understand the mechanical degradation mechanism prevalent in Ni-rich NMC cathodes and build superior lithium ion-based energy storage devices for the application in next-generation devices.

References

1.
Blomgren
,
G. E.
,
2016
, “
The Development and Future of Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
1
), pp.
A5019
A5025
.
2.
Albertus
,
P.
,
Babinec
,
S.
,
Litzelman
,
S.
, and
Newman
,
A.
,
2018
, “
Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries
,”
Nat. Energy
,
3
(
1
), pp.
16
21
.
3.
Karabelli
,
D.
, and
Birke
,
K. P.
,
2021
, “
Feasible Energy Density Pushes of Li-Metal vs. Li-Ion Cells
,”
Appl. Sci.
,
11
(
16
), p.
7592
.
4.
Booth
,
S. G.
,
Nedoma
,
A. J.
,
Anthonisamy
,
N. N.
,
Baker
,
P. J.
,
Boston
,
R.
,
Bronstein
,
H.
,
Clarke
,
S. J.
,
Cussen
,
E. J.
,
Daramalla
,
V.
, and
De Volder
,
M.
,
2021
, “
Perspectives for Next Generation Lithium-Ion Battery Cathode Materials
,”
APL Mater.
,
9
(
10
), p.
109201
.
5.
Grey
,
C. P.
, and
Hall
,
D. S.
,
2020
, “
Prospects for Lithium-Ion Batteries and Beyond—A 2030 Vision
,”
Nat. Commun.
,
11
(
1
), pp.
1
4
.
6.
Cheng
,
X.-B.
,
Zhang
,
R.
,
Zhao
,
C.-Z.
, and
Zhang
,
Q.
,
2017
, “
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
,”
Chem. Rev.
,
117
(
15
), pp.
10403
10473
.
7.
Monroe
,
C.
, and
Newman
,
J.
,
2004
, “
The Effect of Interfacial Deformation on Electrodeposition Kinetics
,”
J. Electrochem. Soc.
,
151
(
6
), pp.
A880
A886
.
8.
Monroe
,
C.
, and
Newman
,
J.
,
2005
, “
The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A396
A404
.
9.
Porz
,
L.
,
Swamy
,
T.
,
Sheldon
,
B. W.
,
Rettenwander
,
D.
,
Frömling
,
T.
,
Thaman
,
H. L.
,
Berendts
,
S.
,
Uecker
,
R.
,
Carter
,
W. C.
, and
Chiang
,
Y. M.
,
2017
, “
Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes
,”
Adv. Energy Mater.
,
7
(
20
), p.
1701003
.
10.
Shen
,
F.
,
Dixit
,
M. B.
,
Xiao
,
X.
, and
Hatzell
,
K. B.
,
2018
, “
Effect of Pore Connectivity on Li Dendrite Propagation Within LLZO Electrolytes Observed With Synchrotron X-Ray Tomography
,”
ACS Energy Lett.
,
3
(
4
), pp.
1056
1061
.
11.
Krauskopf
,
T.
,
Richter
,
F. H.
,
Zeier
,
W. G.
, and
Janek
,
J. r.
,
2020
, “
Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries
,”
Chem. Rev.
,
120
(
15
), pp.
7745
7794
.
12.
Li
,
W.
,
Erickson
,
E. M.
, and
Manthiram
,
A.
,
2020
, “
High-Nickel Layered Oxide Cathodes for Lithium-Based Automotive Batteries
,”
Nat. Energy
,
5
(
1
), pp.
26
34
.
13.
Aryal
,
S.
,
Durham
,
J. L.
,
Lipson
,
A. L.
,
Pupek
,
K. Z.
, and
Kahvecioglu
,
O.
,
2021
, “
Roles of Mn and Co in Ni-Rich Layered Oxide Cathodes Synthesized Utilizing a Taylor Vortex Reactor
,”
Electrochim. Acta
,
391
, p.
138929
.
14.
Mesnier
,
A.
, and
Manthiram
,
A.
,
2020
, “
Synthesis of LiNiO2 at Moderate Oxygen Pressure and Long-Term Cyclability in Lithium-Ion Full Cells
,”
ACS Appl. Mater. Interfaces
,
12
(
47
), pp.
52826
52835
.
15.
Cao
,
D.
,
Zhang
,
Y.
,
Nolan
,
A. M.
,
Sun
,
X.
,
Liu
,
C.
,
Sheng
,
J.
,
Mo
,
Y.
,
Wang
,
Y.
, and
Zhu
,
H.
,
2019
, “
Stable Thiophosphate-Based All-Solid-State Lithium Batteries Through Conformally Interfacial Nanocoating
,”
Nano Lett.
,
20
(
3
), pp.
1483
1490
.
16.
Sim
,
S.-J.
,
Lee
,
S.-H.
,
Jin
,
B.-S.
, and
Kim
,
H.-S.
,
2019
, “
Improving the Electrochemical Performances Using a V-Doped Ni-Rich NCM Cathode
,”
Sci. Rep.
,
9
(
1
), pp.
1
8
.
17.
Xin
,
F.
,
Zhou
,
H.
,
Chen
,
X.
,
Zuba
,
M.
,
Chernova
,
N.
,
Zhou
,
G.
, and
Whittingham
,
M. S.
,
2019
, “
Li–Nb–O Coating/Substitution Enhances the Electrochemical Performance of the LiNi0. 8Mn0. 1Co0. 1O2 (NMC 811) Cathode
,”
ACS Appl. Mater. Interfaces
,
11
(
38
), pp.
34889
34894
.
18.
Wang
,
Y.
,
Wang
,
E.
,
Zhang
,
X.
, and
Yu
,
H.
,
2021
, “
High-Voltage “Single-Crystal” Cathode Materials for Lithium-Ion Batteries
,”
Energy Fuels
,
35
(
3
), pp.
1918
1932
.
19.
Yan
,
P.
,
Zheng
,
J.
,
Gu
,
M.
,
Xiao
,
J.
,
Zhang
,
J.-G.
, and
Wang
,
C.-M.
,
2017
, “
Intragranular Cracking as a Critical Barrier for High-Voltage Usage of Layer-Structured Cathode for Lithium-Ion Batteries
,”
Nat. Commun.
,
8
(
1
), pp.
1
9
.
20.
Li
,
P.
,
Zhao
,
Y.
,
Shen
,
Y.
, and
Bo
,
S.-H.
,
2020
, “
Fracture Behavior in Battery Materials
,”
J. Phys.: Energy
,
2
(
2
), p.
022002
.
21.
Yan
,
P.
,
Zheng
,
J.
,
Liu
,
J.
,
Wang
,
B.
,
Cheng
,
X.
,
Zhang
,
Y.
,
Sun
,
X.
,
Wang
,
C.
, and
Zhang
,
J.-G.
,
2018
, “
Tailoring Grain Boundary Structures and Chemistry of Ni-Rich Layered Cathodes for Enhanced Cycle Stability of Lithium-Ion Batteries
,”
Nat. Energy
,
3
(
7
), pp.
600
605
.
22.
Jung
,
R.
,
Metzger
,
M.
,
Maglia
,
F.
,
Stinner
,
C.
, and
Gasteiger
,
H. A.
,
2017
, “
Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1361
A1377
.
23.
Csernica
,
P. M.
,
Kalirai
,
S. S.
,
Gent
,
W. E.
,
Lim
,
K.
,
Yu
,
Y.-S.
,
Liu
,
Y.
,
Ahn
,
S.-J.
,
Kaeli
,
E.
,
Xu
,
X.
, and
Stone
,
K. H.
,
2021
, “
Persistent and Partially Mobile Oxygen Vacancies in Li-Rich Layered Oxides
,”
Nat. Energy
,
6
(
6
), pp.
642
652
.
24.
Lv
,
H.
,
Li
,
C.
,
Zhao
,
Z.
,
Wu
,
B.
, and
Mu
,
D.
,
2021
, “
A Review: Modification Strategies of Nickel-Rich Layer Structure Cathode (Ni ≥ 0.8) Materials for Lithium Ion Power Batteries
,”
J. Energy Chem.
,
60
, pp.
435
450
.
25.
Lipson
,
A. L.
,
Ross
,
B. J.
,
Durham
,
J. L.
,
Liu
,
D.
,
LeResche
,
M.
,
Fister
,
T. T.
,
Liu
,
L.
, and
Kim
,
K.
,
2021
, “
Stabilizing NMC 811 Li-Ion Battery Cathode Through a Rapid Coprecipitation Process
,”
ACS Appl. Energy Mater.
,
4
(
2
), pp.
1972
1977
.
26.
Pang
,
W. K.
,
Lin
,
H.-F.
,
Peterson
,
V. K.
,
Lu
,
C.-Z.
,
Liu
,
C.-E.
,
Liao
,
S.-C.
, and
Chen
,
J.-M.
,
2017
, “
Effects of Fluorine and Chromium Doping on the Performance of Lithium-Rich Li1 + x MO2 (M = Ni, Mn, Co) Positive Electrodes
,”
Chem. Mater.
,
29
(
24
), pp.
10299
10311
.
27.
Susai
,
F. A.
,
Kovacheva
,
D.
,
Kravchuk
,
T.
,
Kauffmann
,
Y.
,
Maiti
,
S.
,
Chakraborty
,
A.
,
Kunnikuruvan
,
S.
,
Talianker
,
M.
,
Sclar
,
H.
, and
Fleger
,
Y.
,
2021
, “
Studies of Nickel-Rich LiNi0. 85Co0. 10Mn0. 05O2 Cathode Materials Doped With Molybdenum Ions for Lithium-Ion Batteries
,”
Materials
,
14
(
8
), p.
2070
.
28.
Allen
,
J. M.
,
Weddle
,
P. J.
,
Verma
,
A.
,
Mallarapu
,
A.
,
Usseglio-Viretta
,
F.
,
Finegan
,
D. P.
,
Colclasure
,
A. M.
,
Mai
,
W.
,
Schmidt
,
V.
, and
Furat
,
O.
,
2021
, “
Quantifying the Influence of Charge Rate and Cathode-Particle Architectures on Degradation of Li-Ion Cells Through 3D Continuum-Level Damage Models
,”
J. Power Sources
,
512
, p.
230415
.
29.
Teichert
,
P.
,
Jahnke
,
H.
, and
Figgemeier
,
E.
,
2021
, “
Degradation Mechanism of Monocrystalline Ni-Rich Li [Ni x Mn y Co z] O 2 (NMC) Active Material in Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
168
(
9
), p.
090532
.
30.
Xu
,
R.
,
De Vasconcelos
,
L.
,
Shi
,
J.
,
Li
,
J.
, and
Zhao
,
K.
,
2018
, “
Disintegration of Meatball Electrodes for LiNi x Mn y Co z O2 Cathode Materials
,”
Exp. Mech.
,
58
(
4
), pp.
549
559
.
31.
Liu
,
T.
,
Yu
,
L.
,
Lu
,
J.
,
Zhou
,
T.
,
Huang
,
X.
,
Cai
,
Z.
,
Dai
,
A.
,
Gim
,
J.
,
Ren
,
Y.
, and
Xiao
,
X.
,
2021
, “
Rational Design of Mechanically Robust Ni-Rich Cathode Materials via Concentration Gradient Strategy
,”
Nat. Commun.
,
12
(
1
), pp.
1
10
.
32.
Sun
,
H. H.
,
Ryu
,
H.-H.
,
Kim
,
U.-H.
,
Weeks
,
J. A.
,
Heller
,
A.
,
Sun
,
Y.-K.
, and
Mullins
,
C. B.
,
2020
, “
Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes
,”
ACS Energy Lett.
,
5
(
4
), pp.
1136
1146
.
33.
Dolotko
,
O.
,
Senyshyn
,
A.
,
Mühlbauer
,
M. J.
,
Nikolowski
,
K.
, and
Ehrenberg
,
H.
,
2014
, “
Understanding Structural Changes in NMC Li-Ion Cells by In Situ Neutron Diffraction
,”
J. Power Sources
,
255
, pp.
197
203
.
34.
Lee
,
S. Y.
,
Park
,
G. S.
,
Jung
,
C.
,
Ko
,
D. S.
,
Park
,
S. Y.
,
Kim
,
H. G.
,
Hong
,
S. H.
,
Zhu
,
Y.
, and
Kim
,
M.
,
2019
, “
Revisiting Primary Particles in Layered Lithium Transition-Metal Oxides and Their Impact on Structural Degradation
,”
Adv. Sci.
,
6
(
6
), p.
1800843
.
35.
Xu
,
R.
, and
Zhao
,
K.
,
2018
, “
Corrosive Fracture of Electrodes in Li-Ion Batteries
,”
J. Mech. Phys. Solids
,
121
, pp.
258
280
.
36.
Li
,
H.
,
Zhou
,
P.
,
Liu
,
F.
,
Li
,
H.
,
Cheng
,
F.
, and
Chen
,
J.
,
2019
, “
Stabilizing Nickel-Rich Layered Oxide Cathodes by Magnesium Doping for Rechargeable Lithium-Ion Batteries
,”
Chem. Sci.
,
10
(
5
), pp.
1374
1379
.
37.
Taghikhani
,
K.
,
Weddle
,
P. J.
,
Berger
,
J.
, and
Kee
,
R. J.
,
2021
, “
Modeling Coupled Chemo-Mechanical Behavior of Randomly Oriented NMC811 Polycrystalline Li-Ion Battery Cathodes
,”
J. Electrochem. Soc.
,
168
(
8
), p.
080511
.
38.
Trevisanello
,
E.
,
Ruess
,
R.
,
Conforto
,
G.
,
Richter
,
F. H.
, and
Janek
,
J.
,
2021
, “
Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion
,”
Adv. Energy Mater.
,
11
(
18
), p.
2003400
.
39.
Ruess
,
R.
,
Schweidler
,
S.
,
Hemmelmann
,
H.
,
Conforto
,
G.
,
Bielefeld
,
A.
,
Weber
,
D. A.
,
Sann
,
J.
,
Elm
,
M. T.
, and
Janek
,
J.
,
2020
, “
Influence of NCM Particle Cracking on Kinetics of Lithium-Ion Batteries With Liquid or Solid Electrolyte
,”
J. Electrochem. Soc.
,
167
(
10
), p.
100532
.
40.
Kotak
,
N.
,
Barai
,
P.
,
Verma
,
A.
,
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2018
, “
Electrochemistry-Mechanics Coupling in Intercalation Electrodes
,”
J. Electrochem. Soc.
,
165
(
5
), pp.
A1064
A1083
.
41.
Zhao
,
Q.
,
Stalin
,
S.
,
Zhao
,
C.-Z.
, and
Archer
,
L. A.
,
2020
, “
Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries
,”
Nat. Rev. Mater.
,
5
(
3
), pp.
229
252
.
42.
Kato
,
Y.
,
Hori
,
S.
,
Saito
,
T.
,
Suzuki
,
K.
,
Hirayama
,
M.
,
Mitsui
,
A.
,
Yonemura
,
M.
,
Iba
,
H.
, and
Kanno
,
R.
,
2016
, “
High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors
,”
Nat. Energy
,
1
(
4
), pp.
1
7
.
43.
Banerjee
,
A.
,
Wang
,
X.
,
Fang
,
C.
,
Wu
,
E. A.
, and
Meng
,
Y. S.
,
2020
, “
Interfaces and Interphases in All-Solid-State Batteries With Inorganic Solid Electrolytes
,”
Chem. Rev.
,
120
(
14
), pp.
6878
6933
.
44.
Koerver
,
R.
,
Aygün
,
I.
,
Leichtweiß
,
T.
,
Dietrich
,
C.
,
Zhang
,
W.
,
Binder
,
J. O.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J. r.
,
2017
, “
Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes
,”
Chem. Mater.
,
29
(
13
), pp.
5574
5582
.
45.
Kim
,
K. H.
,
Iriyama
,
Y.
,
Yamamoto
,
K.
,
Kumazaki
,
S.
,
Asaka
,
T.
,
Tanabe
,
K.
,
Fisher
,
C. A.
,
Hirayama
,
T.
,
Murugan
,
R.
, and
Ogumi
,
Z.
,
2011
, “
Characterization of the Interface Between LiCoO2 and Li7La3Zr2O12 in an All-Solid-State Rechargeable Lithium Battery
,”
J. Power Sources
,
196
(
2
), pp.
764
767
.
46.
Wang
,
Z.
,
Lee
,
J. Z.
,
Xin
,
H. L.
,
Han
,
L.
,
Grillon
,
N.
,
Guy-Bouyssou
,
D.
,
Bouyssou
,
E.
,
Proust
,
M.
, and
Meng
,
Y. S.
,
2016
, “
Effects of Cathode Electrolyte Interfacial (CEI) Layer on Long Term Cycling of All-Solid-State Thin-Film Batteries
,”
J. Power Sources
,
324
, pp.
342
348
.
47.
Zhu
,
Y.
,
He
,
X.
, and
Mo
,
Y.
,
2016
, “
First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte–Electrode Interfaces in All-Solid-State Li-Ion Batteries
,”
J. Mater. Chem. A
,
4
(
9
), pp.
3253
3266
.
48.
Wang
,
D. W.
,
Sun
,
Q.
,
Luo
,
J.
,
Liang
,
J. N.
,
Sun
,
Y. P.
,
Li
,
R. Y.
,
Adair
,
K.
, et al
,
2019
, “
Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries
,”
ACS Appl. Mater. Interfaces
,
11
(
5
), pp.
4954
4961
.
49.
Koerver
,
R.
,
Zhang
,
W. B.
,
de Biasi
,
L.
,
Schweidler
,
S.
,
Kondrakov
,
A. O.
,
Kolling
,
S.
,
Brezesinski
,
T.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2018
, “
Chemo-Mechanical Expansion of Lithium Electrode Materials—On the Route to Mechanically Optimized All-Solid-State Batteries
,”
Energy Environ. Sci.
,
11
(
8
), pp.
2142
2158
.
50.
Bucci
,
G.
,
Swamy
,
T.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2017
, “
Modeling of Internal Mechanical Failure of All-Solid-State Batteries During Electrochemical Cycling, and Implications for Battery Design
,”
J. Mater. Chem. A
,
5
(
36
), pp.
19422
19430
.
51.
Bucci
,
G.
,
Talamini
,
B.
,
Renuka Balakrishna
,
A.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2018
, “
Mechanical Instability of Electrode-Electrolyte Interfaces in Solid-State Batteries
,”
Phys. Rev. Mater.
,
2
(
10
), p.
105407
.
52.
Hao
,
F.
, and
Mukherjee
,
P. P.
,
2018
, “
Mesoscale Analysis of the Electrolyte-Electrode Interface in All-Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
A1857
A1864
.
53.
Barai
,
P.
,
Rojas
,
T.
,
Narayanan
,
B.
,
Ngo
,
A. T.
,
Curtiss
,
L. A.
, and
Srinivasan
,
V.
,
2021
, “
Investigation of Delamination-Induced Performance Decay at the Cathode/LLZO Interface
,”
Chem. Mater.
,
33
(
14
), pp.
5527
5541
.
54.
Dixit
,
M. B.
,
Verma
,
A.
,
Zaman
,
W.
,
Zhong
,
X.
,
Kenesei
,
P.
,
Park
,
J. S.
,
Almer
,
J.
,
Mukherjee
,
P. P.
, and
Hatzell
,
K. B.
,
2020
, “
Synchrotron Imaging of Pore Formation in Li Metal Solid-State Batteries Aided by Machine Learning
,”
ACS Appl. Energy Mater.
,
3
(
10
), pp.
9534
9542
.
55.
Han
,
Y.
,
Jung
,
S. H.
,
Kwak
,
H.
,
Jun
,
S.
,
Kwak
,
H. H.
,
Lee
,
J. H.
,
Hong
,
S. T.
, and
Jung
,
Y. S.
,
2021
, “
Single- or Poly-Crystalline Ni-Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will Be the Winners for All-Solid-State Batteries?
,”
Adv. Energy Mater.
,
11
(
21
), p.
2100126
.
56.
Ke
,
X.
,
Wang
,
Y.
,
Ren
,
G.
, and
Yuan
,
C.
,
2020
, “
Towards Rational Mechanical Design of Inorganic Solid Electrolytes for All-Solid-State Lithium ion Batteries
,”
Energy Storage Mater.
,
26
, pp.
313
324
.
57.
Bistri
,
D.
, and
Di Leo
,
C. V.
,
2021
, “
Modeling of Chemo-Mechanical Multi-Particle Interactions in Composite Electrodes for Liquid and Solid-State Li-Ion Batteries
,”
J. Electrochem. Soc.
,
168
(
3
), p.
030515
.
58.
Nukala
,
P. K. V. V.
,
Simunovic
,
S.
, and
Guddati
,
M. N.
,
2005
, “
An Efficient Algorithm for Modelling Progressive Damage Accumulation in Disordered Materials
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
1982
2008
.
59.
Barai
,
P.
, and
Mukherjee
,
P. P.
,
2013
, “
Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
A955
A967
.
60.
Shoji
,
M.
,
Munakata
,
H.
, and
Kanamura
,
K.
,
2016
, “
Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets
,”
Front. Energy Res.
,
4
, p.
32
.
61.
Barai
,
P.
,
Higa
,
K.
,
Ngo
,
A. T.
,
Curtiss
,
L. A.
, and
Srinivasan
,
V.
,
2019
, “
Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A1752
A1762
.
62.
Mendoza
,
H.
,
Roberts
,
S. A.
,
Brunini
,
V. E.
, and
Grillet
,
A. M.
,
2016
, “
Mechanical and Electrochemical Response of a LiCoO2 Cathode Using Reconstructed Microstructures
,”
Electrochim. Acta
,
190
, pp.
1
15
.
63.
Guo
,
M.
,
Sikha
,
G.
, and
White
,
R. E.
,
2011
, “
Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
(vol 158, pg A122, 2011),”
J. Electrochem. Soc.
,
158
(
5
), pp.
S11
S11
.
64.
Wang
,
C.
,
Yu
,
R.
,
Hwang
,
S.
,
Liang
,
J.
,
Li
,
X.
,
Zhao
,
C.
,
Sun
,
Y.
, et al
,
2020
, “
Single Crystal Cathodes Enabling High-Performance all-Solid-State Lithium-Ion Batteries
,”
Energy Storage Mater.
,
30
, pp.
98
103
.
65.
He
,
X.
,
Sun
,
H.
,
Ding
,
X.
, and
Zhao
,
K.
,
2021
, “
Grain Boundaries and Their Impact on Li Kinetics in Layered-Oxide Cathodes for Li-Ion Batteries
,”
J. Phys. Chem. C
,
125
(
19
), pp.
10284
10294
.
66.
Yang
,
S.
,
Yan
,
B.
,
Wu
,
J.
,
Lu
,
L.
, and
Zeng
,
K.
,
2017
, “
Temperature-Dependent Lithium-Ion Diffusion and Activation Energy of Li1.2Co0.13Ni0.13Mn0.54O2 Thin-Film Cathode at Nanoscale by Using Electrochemical Strain Microscopy
,”
ACS Appl. Mater. Interfaces
,
9
(
16
), pp.
13999
14005
.
67.
Sharifi-Asl
,
S.
,
Yurkiv
,
V.
,
Gutierrez
,
A.
,
Cheng
,
M.
,
Balasubramanian
,
M.
,
Mashayek
,
F.
,
Croy
,
J.
, and
Shahbazian-Yassar
,
R.
,
2020
, “
Revealing Grain-Boundary-Induced Degradation Mechanisms in Li-Rich Cathode Materials
,”
Nano Lett.
,
20
(
2
), pp.
1208
1217
.
68.
Mehrotra
,
A.
,
Ross
,
P. N.
, and
Srinivasan
,
V.
,
2014
, “
Quantifying Polarization Losses in an Organic Liquid Electrolyte/Single Ion Conductor Interface
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
A1681
A1690
.
69.
Awarke
,
A.
,
Pischinger
,
S.
, and
Ogrzewalla
,
J.
,
2013
, “
Pseudo 3D Modeling and Analysis of the SEI Growth Distribution in Large Format Li-Ion Polymer Pouch Cells
,”
J. Electrochem. Soc.
,
160
(
1
), pp.
A172
A181
.
70.
Wu
,
S.-L.
,
Zhang
,
W.
,
Song
,
X.
,
Shukla
,
A. K.
,
Liu
,
G.
,
Battaglia
,
V.
, and
Srinivasan
,
V.
,
2012
, “
High Rate Capability of Li (Ni1/3Mn1/3Co1/3) O2 Electrode for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
A438
A444
.
71.
Wang
,
C.
,
Fu
,
K.
,
Kammampata
,
S. P.
,
McOwen
,
D. W.
,
Samson
,
A. J.
,
Zhang
,
L.
,
Hitz
,
G. T.
, et al
,
2020
, “
Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries
,”
Chem. Rev.
,
120
(
10
), pp.
4257
4300
.
72.
Xu
,
R.
,
Sun
,
H.
,
de Vasconcelos
,
L. S.
, and
Zhao
,
K.
,
2017
, “
Mechanical and Structural Degradation of LiNixMnyCozO2Cathode in Li-Ion Batteries: An Experimental Study
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3333
A3341
.
73.
Qi
,
Y.
,
Hector
,
L. G.
,
James
,
C.
, and
Kim
,
K. J.
,
2014
, “
Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials From First Principles Calculations
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3010
F3018
.
74.
Sun
,
H.
, and
Zhao
,
K. J.
,
2017
, “
Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials
,”
J. Phys. Chem. C
,
121
(
11
), pp.
6002
6010
.
75.
Xu
,
R.
,
Scalco de Vasconcelos
,
L.
, and
Zhao
,
K. J.
,
2016
, “
Computational Analysis of Chemomechanical Behaviors of Composite Electrodes in Li-Ion Batteries
,”
J. Mater. Res.
,
31
(
18
), pp.
2715
2727
.
76.
Zhao
,
K. J.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z. G.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p.
073517
.
77.
Yu
,
S.
, and
Siegel
,
D. J.
,
2018
, “
Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration Through Stiff Solid Electrolytes
,”
ACS Appl. Mater. Interfaces
,
10
(
44
), pp.
38151
38158
.
78.
Barai
,
P.
,
Ngo
,
A. T.
,
Narayanan
,
B.
,
Higa
,
K. F.
,
Curtiss
,
L. A.
, and
Srinivasan
,
V.
,
2020
, “
The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes
,”
J. Electrochem. Soc.
,
167
, p.
100537
.
79.
Hikima
,
K.
,
Totani
,
M.
,
Obokata
,
S.
,
Muto
,
H.
, and
Matsuda
,
A.
,
2022
, “
Mechanical Properties of Sulfide-Type Solid Electrolytes Analyzed by Indentation Methods
,”
ACS Appl. Energy Mater.
,
5
(
2
), pp.
2349
2355
.
80.
Qiu
,
J.
,
Wu
,
M.
,
Luo
,
W.
,
Xu
,
B.
,
Liu
,
G.
, and
Ouyang
,
C.
,
2021
, “
Insights Into Bulk Properties and Transport Mechanisms in New Ternary Halide Solid Electrolytes: First-Principles Calculations
,”
J. Phys. Chem. C
,
125
(
42
), pp.
23510
23520
.
81.
Haruyama
,
J.
,
Sodeyama
,
K.
,
Han
,
L.
,
Takada
,
K.
, and
Tateyama
,
Y.
,
2014
, “
Space–Charge Layer Effect at Interface Between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery
,”
Chem. Mater.
,
26
(
14
), pp.
4248
4255
.
82.
Okuno
,
Y.
,
Haruyama
,
J.
, and
Tateyama
,
Y.
,
2020
, “
Comparative Study on Sulfide and Oxide Electrolyte Interfaces with Cathodes in All-Solid-State Battery via First-Principles Calculations
,”
ACS Appl. Energy Mater.
,
3
(
11
), pp.
11061
11072
.
83.
Deng
,
Z.
,
Wang
,
Z. B.
,
Chu
,
I. H.
,
Luo
,
J.
, and
Ong
,
S. P.
,
2016
, “
Elastic Properties of Alkali Superionic Conductor Electrolytes From First Principles Calculations
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A67
A74
.
84.
Yu
,
S.
,
Schmidt
,
R. D.
,
Garcia-Mendez
,
R.
,
Herbert
,
E.
,
Dudney
,
N. J.
,
Wolfenstine
,
J. B.
,
Sakamoto
,
J.
, and
Siegel
,
D. J.
,
2016
, “
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
,”
Chem. Mater.
,
28
(
1
), pp.
197
206
.
85.
Harlow
,
J. E.
,
Ma
,
X. W.
,
Li
,
J.
,
Logan
,
E.
,
Liu
,
Y. L.
,
Zhang
,
N.
,
Ma
,
L.
, et al
,
2019
, “
A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to Be Used as Benchmarks for New Battery Technologies
,”
J. Electrochem. Soc.
,
166
(
13
), pp.
A3031
A3044
.
86.
Li
,
J.
,
Cameron
,
A. R.
,
Li
,
H. Y.
,
Glazier
,
S.
,
Xiong
,
D. J.
,
Chatzidakis
,
M.
,
Allen
,
J.
,
Botton
,
G. A.
, and
Dahn
,
J. R.
,
2017
, “
Comparison of Single Crystal and Polycrystalline LiNi0.5Mn0.3Co0.2O2 Positive Electrode Materials for High Voltage Li-Ion Cells
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1534
A1544
.
87.
Quinn
,
A.
,
Moutinho
,
H.
,
Usseglio-Viretta
,
F.
,
Verma
,
A.
,
Smith
,
K.
,
Keyser
,
M.
, and
Finegan
,
D. P.
,
2020
, “
Electron Backscatter Diffraction for Investigating Lithium-Ion Electrode Particle Architectures
,”
Cell Rep. Phys. Sci.
,
1
(
8
), p.
100137
.
88.
Park
,
K. J.
,
Hwang
,
J. Y.
,
Ryu
,
H. H.
,
Maglia
,
F.
,
Kim
,
S. J.
,
Lamp
,
P.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2019
, “
Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?
,”
ACS Energy Lett.
,
4
(
6
), pp.
1394
1400
.
89.
Lin
,
F.
,
Markus
,
I. M.
,
Nordlund
,
D.
,
Weng
,
T. C.
,
Asta
,
M. D.
,
Xin
,
H. L. L.
, and
Doeff
,
M. M.
,
2014
, “
Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries
,”
Nat. Commun.
,
5
, p.
3529
.
90.
Neumann
,
A.
,
Randau
,
S.
,
Becker-Steinberger
,
K.
,
Danner
,
T.
,
Hein
,
S.
,
Ning
,
Z. Y.
,
Marrow
,
J.
,
Richter
,
F. H.
,
Janek
,
J.
, and
Latz
,
A.
,
2020
, “
Analysis of Interfacial Effects in All-Solid-State Batteries With Thiophosphate Solid Electrolytes
,”
ACS Appl. Mater. Interfaces
,
12
(
8
), pp.
9277
9291
.
91.
Barai
,
P.
, and
Mukherjee
,
P. P.
,
2016
, “
Mechano-Electrochemical Stochastics in High-Capacity Electrodes for Energy Storage
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
A1120
A1137
.
92.
Tranchot
,
A.
,
Etiernble
,
A.
,
Thivel
,
P. X.
,
Idrissi
,
H.
, and
Roue
,
L.
,
2015
, “
In-Situ Acoustic Emission Study of Si-Based Electrodes for Li-Ion Batteries
,”
J. Power Sources
,
279
, pp.
259
266
.
93.
Yi
,
M. Y.
,
Li
,
J.
,
Fan
,
X. M.
,
Bai
,
M. H.
,
Zhang
,
Z.
,
Hong
,
B.
,
Zhang
,
Z.
,
Hu
,
G. R.
,
Jiang
,
H.
, and
Lai
,
Y. Q.
,
2021
, “
Single Crystal Ni-Rich Layered Cathodes Enabling Superior Performance in All-Solid-State Batteries With PEO-Based Solid Electrolytes
,”
J. Mater. Chem. A
,
9
(
31
), pp.
16787
16797
.
94.
Doerrer
,
C.
,
Capone
,
I.
,
Narayanan
,
S.
,
Liu
,
J. L.
,
Grovenor
,
C. R. M.
,
Pasta
,
M.
, and
Grant
,
P. S.
,
2021
, “
High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries
,”
ACS Appl. Mater. Interfaces
,
13
(
31
), pp.
37809
37815
.
95.
Park
,
K.
,
Yu
,
B. C.
,
Jung
,
J. W.
,
Li
,
Y. T.
,
Zhou
,
W. D.
,
Gao
,
H. C.
,
Son
,
S.
, and
Goodenough
,
J. B.
,
2016
, “
Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface Between LiCoO2 and Garnet-Li7La3Zr2O12
,”
Chem. Mater.
,
28
(
21
), pp.
8051
8059
.
You do not currently have access to this content.